Oxidative heat treatment of 316L stainless steel for effective catalytic growth of carbon nanotubes

2014 ◽  
Vol 313 ◽  
pp. 227-236 ◽  
Author(s):  
Chuanwei Zhuo ◽  
Xin Wang ◽  
Welville Nowak ◽  
Yiannis A. Levendis
2013 ◽  
Vol 795 ◽  
pp. 492-495 ◽  
Author(s):  
Mohd Noor Mazlee ◽  
Alvin Tan Yin Zhen ◽  
Shamsul Baharin Jamaludin ◽  
Nur Farhana Hayazi ◽  
Shaiful Rizam Shamsudin

Tensile shear strength and ageing treatment of dissimilar 6063 aluminum alloy-316L stainless steel joint fabricated by spot welding were investigated. The results showed that tensile shear strength increased with the increasing of welding current. The enhancement of tensile shear strength of the joints was due to the enlargement of the nugget diameter. It was also found that the tensile shear strength values for heat treated joint almost similar to that of non-heat treated joint.


CORROSION ◽  
10.5006/3759 ◽  
2021 ◽  
Author(s):  
Yanli Wang ◽  
Ping Wang ◽  
Changxuan Wang ◽  
Shenghua Zhang

A Cr2O3 diffusion barrier was in-situ formed between Ni coating and 316L through electroplating a Ni(NiO) transition layer firstly and then annealing at 900 °C for 8 h in Ar. The obtained Cr2O3 is dense, continuously grown and well-bonded with 316L. The diffusion and corrosion resistance of Ni coating with and without Cr2O3 diffusion barrier were investigated. No visible outer diffusion of elements was found during the heat treatment at 750 °C for 150 h and the Ni coating with a Cr2O3 diffusion barrier can provide a good protection for 316L in molten (Li,Na,K)F.


Author(s):  
Sterling Voss ◽  
Bret Mecham ◽  
Lucy Bowden ◽  
Jacquelyn Monroe ◽  
Anton E. Bowden ◽  
...  

Abstract Physically altering the micro-topography of a surface can dramatically affect its capacity to support or prevent biofilm growth. Growing carbon-infiltrated carbon nanotubes on biomedical materials is one such approach which has proven effective. Unfortunately, the high temperature and carbon-rich gas exposure required for this procedure has proven to have deleterious effects. This paper proposes a kinetic model to explain the rusting phenomenon observed on 316L stainless steel substrates which have undergone the chemical vapor deposition process to grow carbon-infiltrated carbon nanotubes. The model is derived from Fick’s Second Law, and predicts the growth of chromium carbide as a function of temperature and time. Chromium carbide formation is shown to be the mechanism of corrosion, as chromium atoms are leeched from the the matrix, preventing the formation of a passivating chromium oxide layer in place of problematic iron oxide (rust) formation. The model is validated using experimental methods, which involve immersion in bacteria culture, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX).


2019 ◽  
Vol 6 (10) ◽  
pp. 106575
Author(s):  
Bin Wang ◽  
Ming-Yan Jiang ◽  
Ming Xu ◽  
Cheng-Wu Cui ◽  
Jie Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document