scholarly journals Deep UV laser induced periodic surface structures on silicon formed by self-organization of nanoparticles

2020 ◽  
Vol 520 ◽  
pp. 146307 ◽  
Author(s):  
Raul Zazo ◽  
Javier Solis ◽  
José A. Sanchez-Gil ◽  
Rocio Ariza ◽  
Rosalia Serna ◽  
...  
Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1031
Author(s):  
Michael Dasbach ◽  
Hendrik M. Reinhardt ◽  
Norbert A. Hampp

Laser-induced periodic surface structures (LIPSS) provide an elegant solution for the generation of highly ordered periodic patterns on the surface of solids. In this study, LIPSS are utilized for the formation of periodic platinum nanowire arrays. In a process based on laser-stimulated self-organization, platinum thin films, sputter-deposited onto silicon, are transformed into nanowire arrays with an average periodicity of 538 nm. The width of the platinum nanowires is adjustable in a range from 20 nm to 250 nm by simply adjusting the thickness of the initial platinum thin films in a range from 0.3 nm to 4.3 nm. With increasing width, platinum nanowires show a rising tendency to sink into the surface of the silicon wafer, thus indicating alloying between platinum and silicon upon LIPSS-formation by a nanosecond-pulsed laser. The Pt/silicon wires may be etched away, leaving a complementary nanostructure in the silicon surface.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1836 ◽  
Author(s):  
Evgeny L. Gurevich ◽  
Yoann Levy ◽  
Nadezhda M. Bulgakova

Two different scenarios are usually invoked in the formation of femtosecond Laser-Induced Periodic Surface Structures (LIPSS), either “self-organization” mechanisms or a purely “plasmonic” approach. In this paper, a three-step model of formation of single-laser-shot LIPSS is summarized. It is based on the periodic perturbation of the electronic temperature followed by an amplification, for given spatial periods, of the modulation in the lattice temperature and a final possible relocation by hydrodynamic instabilities. An analytical theory of the evolution of the temperature inhomogeneities is reported and supported by numerical calculations on the examples of three different metals: Al, Au, and Mo. The criteria of the possibility of hydrodynamic instabilities are also discussed.


1996 ◽  
Author(s):  
Klony S. Lieberman ◽  
Hanan Terkel ◽  
Michael Rudman ◽  
A. Ignatov ◽  
Aaron Lewis

2020 ◽  
Vol 9 (1-2) ◽  
pp. 11-39 ◽  
Author(s):  
Stephan Gräf

AbstractThe use of ultra-short pulsed lasers enables the fabrication of laser-induced periodic surface structures (LIPSS) on various materials following a single-step, direct-writing technique. These specific, well-ordered nanostructures with periodicities in the order of the utilised laser wavelength facilitate the engineering of surfaces with functional properties. This review paper discusses the physical background of LIPSS formation on substrates with different material properties. Using the examples of structural colours, specific wetting states and the reduction of friction and wear, this work presents experimental approaches that allow to deliberately influence the LIPSS formation process and thus tailor the surface properties. Finally, the review concludes with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces are discussed.


Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 218
Author(s):  
Svetlana N. Khonina ◽  
Alexey P. Porfirev ◽  
Sergey G. Volotovskiy ◽  
Andrey V. Ustinov ◽  
Sergey A. Fomchenkov ◽  
...  

We propose binary diffractive optical elements, combining several axicons of different types (axis-symmetrical and spiral), for the generation of a 3D intensity distribution in the form of multiple vector optical ‘bottle’ beams, which can be tailored by a change in the polarization state of the illumination radiation. The spatial dynamics of the obtained intensity distribution with different polarization states (circular and cylindrical of various orders) were investigated in paraxial mode numerically and experimentally. The designed binary axicons were manufactured using the e-beam lithography technique. The proposed combinations of optical elements can be used for the generation of vector optical traps in the field of laser trapping and manipulation, as well as for performing the spatial transformation of the polarization state of laser radiation, which is crucial in the field of laser-matter interaction for the generation of special morphologies of laser-induced periodic surface structures.


2007 ◽  
Vol 17 (04) ◽  
pp. 689-695
Author(s):  
ANNA V. SHARIKOVA ◽  
DENNIS K. KILLINGER

We have conducted studies of deep UV laser-induced fluorescence (LIF) for the reagentless detection of trace species and Dissolved Organic Compounds (DOC's) in water. Our LIF detection system had two interchangeable UV lasers, 266 nm and 355 nm, illuminating a flow cell containing a water sample. The fluorescence emitted at 90 degrees to the laser beam was collected by focusing optics, passed through cut-off and interference filters with 21 optical bandpass channels (240–680 nm ), and detected by a photomultiplier tube (PMT). The samples analyzed by the system included bottled, tap and river water; we have also worked with biological and chemical species (Bacillus Globigii, malathion). In terms of the excitation wavelength, it was observed that the deep UV excitation resulted in spectra that contained more features, and had better separation of the LIF from the Raman peak, thus enhancing the detection of unique spectral features.


Sign in / Sign up

Export Citation Format

Share Document