Influence of physical state of intercalating agents on intercalation process of high speed airflow pretreated montmorillonite in supercritical carbon dioxide

2014 ◽  
Vol 25 (6) ◽  
pp. 1786-1792 ◽  
Author(s):  
Wentao He ◽  
Chen Xu ◽  
Shuhao Qin ◽  
Jie Yu ◽  
Min He ◽  
...  
2018 ◽  
Vol 25 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Xinwei Zhang ◽  
Yiyu Lu ◽  
Jiren Tang ◽  
Zhe Zhou ◽  
Qian Li

A numerical model was established to investigate the dynamic oscillation characteristics of supercritical carbon dioxide (sc-CO2) impacting jets. The jet hydrodynamics, heat transfer, and physical properties of sc-CO2 fluid were incorporated into the model. The coupling of multiple fields with large velocity and pressure gradients was achieved using a modified SIMPLE segmentation algorithm. Laboratory experiments validated the reliability of the numerical model by detecting dynamic changes in the pressure on the centerline of the sc-CO2 impacting jet. Analysis of the flow field showed single or double high-speed sc-CO2 mass structures for the sc-CO2 impacting jet, revealing the generation mechanism of the impacting oscillation frequency and the mechanism of improved rock-breaking efficiency by sc-CO2 jet. The oscillation frequency equation was obtained through a quantitative treatment of the velocity and motion area of the sc-CO2 mass. Finally, the equation and simulation results were used to analyze the influences of the target distance, inlet pressure and temperature on the sc-CO2 jet oscillation characteristics. The results showed that the oscillation frequency and amplitude first increased and then decreased with increases in the target distance. The oscillation frequency and amplitude both increased with increasing inlet pressure; the oscillation frequency increased slowly with increasing temperature.


Author(s):  
Chang Hyeon Lim ◽  
Gokul Pathikonda ◽  
Sandeep Pidaparti ◽  
Devesh Ranjan

Abstract Supercritical carbon dioxide (sCO2) power cycles have the potential to offer a higher plant efficiency than the traditional Rankine superheated/supercritical steam cycle or Helium Brayton cycles. The most attractive characteristic of sCO2 is that the fluid density is high near the critical point, allowing compressors to consume less power than conventional gas Brayton cycles and maintain a smaller turbomachinery size. Despite these advantages, there still exist unsolved challenges in design and operation of sCO2 compressors near the critical point. Drastic changes in fluid properties near the critical point and the high compressibility of the fluid pose several challenges. Operating a sCO2 compressor near the critical point has potential to produce two phase flow, which can be detrimental to turbomachinery performance. To mimic the expanding regions of compressor blades, flow through a converging-diverging nozzle is investigated. Pressure profiles along the nozzle are recorded and presented for operating conditions near the critical point. Using high speed shadowgraph images, onset and growth of condensation is captured along the nozzle. Pressure profiles were calculated using a one-dimensional homogeneous equilibrium model and compared with experimental data.


2020 ◽  
Vol 10 (6) ◽  
pp. 2093 ◽  
Author(s):  
Dongbo Shi ◽  
Yonghui Xie

Supercritical carbon dioxide (S-CO2) Brayton cycle technology has the advantages of excellent energy density and heat transfer. The compressor is the most critical and complex component of the cycle. Especially, in order to make the system more reliable and economical, the design method of a high efficiency compressor without a high speed requirement is particularly important. In this paper, thermodynamic design software of a S-CO2 centrifugal compressor is developed. It is used to design the 150 kW grade S-CO2 compressor at the speed of 40,000 rpm. The performance of the initial design is carried out by a 3-D aerodynamic analysis. The aerodynamic optimization includes three aspects: numerical calculation, design software and the flow part geometry parameters. The aerodynamic performance and the off-design performance of the optimal design are obtained. The results show that the total static efficiency of the compressor is 79.54%. The total pressure ratio is up to 1.9. The performance is excellent, and it can operate normally within the mass flow rate range of 5.97 kg/s to 11.05 kg/s. This research provides an intelligent and efficient design method for S-CO2 centrifugal compressors with a low flow rate and low speed, but high pressure ratio.


Author(s):  
Junhyun Cho ◽  
Hyungki Shin ◽  
Jongjae Cho ◽  
Ho-Sang Ra ◽  
Chulwoo Roh ◽  
...  

KIER (Korea Institute of Energy Research) has developed three supercritical carbon dioxide power cycle test loops since 2013. After developing a 10 kWe-class simple un-recuperated Brayton cycle, a second sub-kWe small-scale experimental test loop was manufactured to investigate the characteristics of the supercritical carbon dioxide power cycle, for which a high speed radial type turbo-generator was also designed and manufactured. Using only one channel of the nozzle, the partial admission method was adopted to reduce the rotational speed of the rotor so that commercial oil-lubricated bearings can be used. This was the world’s first approach to the supercritical carbon dioxide turbo-generator. After several tests, operation of the turbine for power production of up to 670 W was successful. Finally, an 80 kWe-class dual Brayton cycle test loop was designed. Before completion of the full test loop, a 60 kWe axial type turbo-generator was first manufactured and our previous 10 kWe-class test loop was upgraded to drive this turbo-generator. Due to leakage flow through the mechanical seal, a make-up loop was also developed. After assembling all test loops, a cold-run test and a preliminary operation test were conducted. In this paper, the power generating operation results of the sub-kWe-class test loop and the construction of the tens of kWe-class test loop which drives an axial type turbo-generator are described.


Author(s):  
Junhyun Cho ◽  
Hyungki Shin ◽  
Ho-Sang Ra ◽  
Gilbong Lee ◽  
Chulwoo Roh ◽  
...  

Three supercritical carbon dioxide (CO2) power cycle experimental loops have been developed in Korea Institute of Energy Research (KIER) from 2013. As the first step, a 10 kWe-class simple un-recuperated Brayton power cycle experimental loop was designed and manufactured to test its feasibility. A 12.6 kWe hermetic turbine-alternator-compressor (TAC) unit which is composed of a centrifugal compressor, a radial turbine and the gas foil bearings was manufactured. The turbine inlet design temperature and pressure were 180 °C and 130 bar, respectively. Preliminary operation was successful at 30,000 RPM which all states of the cycle existed in the supercritical region. Second, a multi-purpose 1 kW-class test loop which operates as a transcritical cycle at a temperature of 200 °C was developed to concentrate on the characteristics of the cycle, control and stability issues of the cycle. A high-speed turbo-generator was developed which is composed of a radial turbine with a partial admission nozzle and the commercial oil-lubricated angular contact ball bearings. Finally, a 60 kWe-class Brayton cycle is being developed which is composed of two turbines and one compressor to utilize flue-gas waste heat. As the first phase of development, a turbo-generator which is composed of an axial turbine, a mechanical seal and the oil-lubricated tilting-pad bearings was designed and manufactured.


Author(s):  
Robert J. Bruckner

Advanced closed loop power generation cycles are under consideration for a variety of terrestrial and aerospace power systems [1]. High pressure closed brayton cycles (CBC) and supercritical cycles (SCS) offer an advantage where the cycle working fluid can also be used as the lubricant for the fluid film bearings that support the high speed turbomachinery. Unfortunately the use of supercritical carbon dioxide as a lubricant is not well understood. In the supercritical condition fluids that are typically thought of as ideal gases take on a significantly different characteristic. While these fluids typically maintain gas-like absolute viscosities, their densities are liquid like. The combination of these effects leads to the emergence of inertial effects in fluid film bearings. In addition to the inertial effects that are brought on by the high fluid density, the temperature of the lubricant cannot be controlled independently of the thermodynamic process. This situation leads to technical challenges in maintaining dimensional stability and clearance control between the rotating and stationary surfaces of the bearings.


Sign in / Sign up

Export Citation Format

Share Document