scholarly journals Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides)

2012 ◽  
Vol 97 (1) ◽  
pp. 10-16 ◽  
Author(s):  
Arunothai Jampeetong ◽  
Hans Brix ◽  
Suwasa Kantawanichkul
Botany ◽  
2017 ◽  
Vol 95 (10) ◽  
pp. 963-969 ◽  
Author(s):  
B.J. Hawkins ◽  
J.M. Kranabetter

A growing appreciation of the intimate association between trees and a wide diversity of mycorrhizal fungi in forest ecosystems is leading to the view that trees and their associated mycorrhizal symbionts should be considered meta-organisms or holobionts. For ectomycorrhizal associations, nitrogen (N) mobilization and uptake is a major contribution from the fungal partners. This paper reviews the traditional methods of measuring N uptake by ectomycorrhizae, and describes the application of microelectrode ion flux measurement of nitrogen uptake using the MIFETM technique to ectomycorrhizal fungi associated with forest trees. From results obtained with microelectrode ion flux measurement thus far, we argue that plant N uptake capacity should be considered an exogenous trait, related to the functional diversity among ectomycorrhizal species and communities, rather than a function of host plant root physiology, alone.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 931
Author(s):  
Mona Giraud ◽  
Jannis Groh ◽  
Horst H. Gerke ◽  
Nicolas Brüggemann ◽  
Harry Vereecken ◽  
...  

Grasslands are one of the most common biomes in the world with a wide range of ecosystem services. Nevertheless, quantitative data on the change in nitrogen dynamics in extensively managed temperate grasslands caused by a shift from energy- to water-limited climatic conditions have not yet been reported. In this study, we experimentally studied this shift by translocating undisturbed soil monoliths from an energy-limited site (Rollesbroich) to a water-limited site (Selhausen). The soil monoliths were contained in weighable lysimeters and monitored for their water and nitrogen balance in the period between 2012 and 2018. At the water-limited site (Selhausen), annual plant nitrogen uptake decreased due to water stress compared to the energy-limited site (Rollesbroich), while nitrogen uptake was higher at the beginning of the growing period. Possibly because of this lower plant uptake, the lysimeters at the water-limited site showed an increased inorganic nitrogen concentration in the soil solution, indicating a higher net mineralization rate. The N2O gas emissions and nitrogen leaching remained low at both sites. Our findings suggest that in the short term, fertilizer should consequently be applied early in the growing period to increase nitrogen uptake and decrease nitrogen losses. Moreover, a shift from energy-limited to water-limited conditions will have a limited effect on gaseous nitrogen emissions and nitrate concentrations in the groundwater in the grassland type of this study because higher nitrogen concentrations are (over-) compensated by lower leaching rates.


2008 ◽  
Vol 5 (2) ◽  
pp. 323-338 ◽  
Author(s):  
P. Raimbault ◽  
N. Garcia

Abstract. One of the major objectives of the BIOSOPE cruise, carried out on the R/V Atalante from October-November 2004 in the South Pacific Ocean, was to establish productivity rates along a zonal section traversing the oligotrophic South Pacific Gyre (SPG). These results were then compared to measurements obtained from the nutrient – replete waters in the Chilean upwelling and around the Marquesas Islands. A dual 13C/15N isotope technique was used to estimate the carbon fixation rates, inorganic nitrogen uptake (including dinitrogen fixation), ammonium (NH4) and nitrate (NO3) regeneration and release of dissolved organic nitrogen (DON). The SPG exhibited the lowest primary production rates (0.15 g C m−2 d−1), while rates were 7 to 20 times higher around the Marquesas Islands and in the Chilean upwelling, respectively. In the very low productive area of the SPG, most of the primary production was sustained by active regeneration processes that fuelled up to 95% of the biological nitrogen demand. Nitrification was active in the surface layer and often balanced the biological demand for nitrate, especially in the SPG. The percentage of nitrogen released as DON represented a large proportion of the inorganic nitrogen uptake (13–15% in average), reaching 26–41% in the SPG, where DON production played a major role in nitrogen cycling. Dinitrogen fixation was detectable over the whole study area; even in the Chilean upwelling, where rates as high as 3 nmoles l−1 d−1 were measured. In these nutrient-replete waters new production was very high (0.69±0.49 g C m−2 d−1) and essentially sustained by nitrate levels. In the SPG, dinitrogen fixation, although occurring at much lower daily rates (≈1–2 nmoles l−1 d−1), sustained up to 100% of the new production (0.008±0.007 g C m−2 d−1) which was two orders of magnitude lower than that measured in the upwelling. The annual N2-fixation of the South Pacific is estimated to 21×1012g, of which 1.34×1012g is for the SPG only. Even if our "snapshot" estimates of N2-fixation rates were lower than that expected from a recent ocean circulation model, these data confirm that the N-deficiency South Pacific Ocean would provide an ideal ecological niche for the proliferation of N2-fixers which are not yet identified.


1997 ◽  
Vol 1 (1) ◽  
pp. 137-158 ◽  
Author(s):  
B. J. Cosby ◽  
R. C. Ferrier ◽  
A. Jenkins ◽  
B. A. Emmett ◽  
R. F. Wright ◽  
...  

Abstract. A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN) considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1) temporal sequences of carbon fluxes and pools- 2) time series of hydrological discharge through the soils, 3) historical and current external sources of inorganic nitrogen; 4) current amounts of nitrogen in the plant and soil organic compartments; 5) constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6) soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1) concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2) total nitrogen contents of the organic and inorganic compartments; 3) C:N ratios of the aggregated plant and soil organic compartments; and 4) rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen dynamics in growing forests receiving nitrogen deposition.


2014 ◽  
pp. 43-47
Author(s):  
Judit Horváth ◽  
János Kátai

The research topic has timeliness, since the rational utilization and protection of the soil, besides the conservation of its diverse functions is part of the sustainable development. Research of the long-term experiments is esentially important, because it can model the term effects in the same place, under the same conditions. If we want to get accurate informations about the occured changes, way and danger of changes, we should track the resupply and effect of the mineral nutrients and the removed quantity of nutrients with the harvest. Nitrogen is an essential element for living organisms, it is present in the soil mainly in organic form. In general only only a low percentage of the total nitrogent content can be used directly by plants in the soil. This inorganic nitrogen is produced by the transformation of organic contents through mineralization processes and it get into the soil by the fertilization. The plants incorporote the mineral nitrogen into our bodies. This is how nitrogen turnover is realized when mineral forms become organic and organic forms become mineral. The purpose of our paper is to make a literature before our research.


Sign in / Sign up

Export Citation Format

Share Document