In vitro digestibility of water-soluble and water-insoluble protein fractions of some common fish larval feeds and feed ingredients

Aquaculture ◽  
2007 ◽  
Vol 262 (2-4) ◽  
pp. 426-435 ◽  
Author(s):  
S.K. Tonheim ◽  
A. Nordgreen ◽  
I. Høgøy ◽  
K. Hamre ◽  
I. Rønnestad
Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1198
Author(s):  
Elías Arilla ◽  
Purificación García-Segovia ◽  
Javier Martínez-Monzó ◽  
Pilar Codoñer-Franch ◽  
Marta Igual

Resistant maltodextrin (RMD) is a water-soluble and fermentable functional fiber. RMD is a satiating prebiotic, reducer of glucose and triglycerides in the blood, and promoter of good gut health, and its addition to food is increasingly frequent. Therefore, it is necessary to study its potential effects on intrinsic bioactive compounds of food and their bioaccessibility. The aim of this study was to evaluate the effect of adding RMD on the bioactive compounds of pasteurized orange juice with and without pulp, and the bioaccessibility of such compounds. RMD was added at different concentrations: 0 (control sample), 2.5%, 5%, and 7.5%. Ascorbic acid (AA) and vitamin C were analyzed using HPLC, whereas total phenols, total carotenoids (TC), and antioxidant capacity were measured using spectrophotometry. After that, sample in vitro digestibility was assessed using the standardized static in vitro digestion method. The control orange juice with pulp presented significantly higher values of bioactive compounds and antioxidant capacity than the control orange juice without pulp (p < 0.05). RMD addition before the juice pasteurization process significantly protected all bioactive compounds, namely total phenols, TC, AA, and vitamin C, as well as the antioxidant capacity (AC) (p < 0.05). Moreover, this bioactive compound protective effect was higher when higher RMD concentrations were added. However, RMD addition improved phenols and vitamin C bioaccessibility but decreased TC and AA bioaccessibility. Therefore, the AC value of samples after gastrointestinal digestion was slightly decreased by RMD addition. Moreover, orange pulp presence decreased total phenols and TC bioaccessibility but increased AA and vitamin C bioaccessibility.


1966 ◽  
Vol 66 (3) ◽  
pp. 351-357 ◽  
Author(s):  
W. Ellis Davies ◽  
G. ap Griffith ◽  
A. Ellington

The primary growth of eight varieties of three species–white clover (3), red clover (4) and lucerne (1)–was sampled at fortnightly intervals and the percentage dry matter, in vitro digestibility, crude protein, water soluble carbohydrates, P, Ca, K, Na and Mg were determined.Differences between species were nearly always significant and the general order of merit was white clover, red clover and lucerne. The exceptions were for dry-matter percentage where this order was reversed, and red clover had the lowest Na and highest Mg content.


2005 ◽  
Vol 80 (3) ◽  
pp. 369-375 ◽  
Author(s):  
A. A. Sadeghi ◽  
A. Nikkhah ◽  
P. Shawrang

AbstractThis study was carried out to determine ruminal dry matter (DM) and crude protein (CP) degradation characteristics of untreated, 2-, 4- and 6-min microwave-treated soya-bean meal (SBM) by using nylon bags and sodium dodecyl sulphatepolyacrylamide gel electrophoresis (SDS-PAGE) techniques. Nylon bags of untreated or treated SBM were suspended into the rumen of three Holstein steers from 0 to 48 h, and data were fitted to non-linear degradation characteristics to calculate effective rumen degradation (ERD). There were significant differences (P < 0·05) for DM and CP degradation parameters between untreated and microwave-treated SBM. Microwave treatments decreased the water-soluble fraction and increased the potentially degradable fraction of CP. The degradation rate of the latter fraction decreased with these treatments. As a consequence, microwave treatments decreased (P < 0·05) ERD of CP. From densitometric scanning, SBM proteins were seen to be composed of two major components; β-conglycinin and glycinin, accounting for proportionately 0·30 and 0·40 of buffer-soluble SBM proteins, respectively. Electrophoretic analysis of untreated, 2-, 4- and 6-min microwave-treated SBM protein residues revealed that two of the subunits of β-conglycinin (α -and α) were degraded completely after 2, 4, 24 and 48 h, respectively, whereas the α subunit of this protein was more resistant to degradation. In untreated SBM, the two subunits of glycinin (acidic and basic polypeptides) were degraded in the middle of the incubation period, but in microwave-treated SBM were not degraded until 48 h of incubation. In vitro digestibility of ruminally undegraded CP of untreated and treated SBM increased (P < 0·05) with increases in rumen incubation time from 8 to 24 h. In conclusion, SBM proteins appeared to be effectively protected from ruminal degradation by a 4-min microwave treatment. SDS-PAGE results indicated that ruminally undegraded protein from untreated SBM was mainly composed of the basic subunit of glycinin, whereas that from microwave-treated SBM was composed of β-conglycinin and both basic and acidic subunits of glycinin.


2000 ◽  
Vol 80 (2) ◽  
pp. 309-313 ◽  
Author(s):  
H. T. Kunelius ◽  
K. B. McRae ◽  
S. A. E. Fillmore ◽  
G. Dürr

Late-maturing cultivars of red clover (Trifolium pratense L.) and timothy (Phleum pratense L.) may be grown in short-term rotations with other crops and harvested for hay and silage. Harvesting forage in mid-summer is often advantageous for field curing, but the quality of mature forage may be low. We studied how harvests at different developmental stages affected yield, composition of herbage, and species persistence. The late-maturing single-cut red clover cultivar Altaswede and late timothy cultivar Farol were grown alone and in combination with and without applied N. Total forage, and red clover and timothy dry matter yields, increased between the first (27 June) and third (11 July) dates of harvest. Timothy grown alone or combined with red clover and fertilized with N produced greater forage yields than red clover alone or red clover + timothy without applied N. The in vitro digestibility of dry matter declined from 670 to 625 g kg−1 and crude protein from 134 to 109 g kg−1 between 27 June and 11 July. Water soluble carbohydrates in forage were low (36–66 g kg−1) in cuts 1 and 2. Macronutrient and micronutrient concentrations were generally highest at the first date of harvest on 27 June. Nutrient concentrations in cut 2 were similar for the three harvest schedules. We conclude that growing late-maturing single-cut red clover combined with late timothy produced high yields with good nutritional quality even at advanced stages of maturity. Single-cut red clover persisted for the first production year making this combination suited for short-term rotations that involve late harvesting of the primary growth. Key words: Red clover, Trifolium pratense, timothy, Phleum pratense, composition


2017 ◽  
Vol 26 (1) ◽  
pp. 47 ◽  
Author(s):  
Mahmoud F. Seleiman ◽  
Shaimaa Selim ◽  
Seija Jaakkola ◽  
Pirjo S.A. Mäkelä

Maize cultivation for silage could be a sustainable option in Boreal conditions, especially when combined with nutrient recycling. Effects of digestate (sludge from biogas of domestic origin) application in comparison with synthetic fertilizer and two maturity stages on chemical composition and in vitro digestibility of whole-crop maize were investigated. Starch, neutral detergent fiber, water soluble carbohydrate (WSC) and digestible organic matter (DOM) contents of maize did not differ in response to the two fertilizer treatments. However, starch, DOM and metabolizable energy of maize increased, while ash, crude protein and WSC contents decreased with increasing maize maturity. Heavy metals in maize fertilized with digestate remained low. The results indicate that whole-crop maize fertilized with digestate and harvested at 150 days after sowing is a promising feed and has good nutritive value, even in Boreal conditions.


2010 ◽  
Vol 39 (3) ◽  
pp. 462-470 ◽  
Author(s):  
Jucilene Cavali ◽  
Odilon Gomes Pereira ◽  
Sebastião de Campos Valadares Filho ◽  
Marlos Oliveira Porto ◽  
Francisco Eden Paiva Fernandes ◽  
...  

The effects of different ratios of sugarcane and elephant grass (0:100, 25:75, 50:50, 75:25 and 100:0% of the natural basis) were assessed on the chemical composition and losses in silages treated with a bacterial inoculant, using laboratory silos. A 2 × 5 factorial arrangement (with and without inoculant and five elephant grass ratios) in a randomized blocks design with three replications was used. Interaction was observed in the sugarcane and elephant grass ratio × bacterial inoculant for crude protein (CP) and pH. The other variables were influenced only by the increasing proportions of elephant grass. The contents of dry matter, neutral detergent fiber corrected for ashes and protein, acid detergent fiber, insoluble protein in acid detergent fiber, hemicellulose and lignin in the silages increased linearly with the proportions of elephant grass. The water soluble carbohydrate contents and dry matter in vitro digestibility of the silages decreased linearly with the increase in the proportion of elephant grass. The mean value of ammonia nitrogen in relation to total N was 7.0% (% of DM). The CP values of the inoculated and non-inoculated silage fitted linear models. The highest CP content was observed in the silage treated with inoculant. The pH values of the silages, with and without inoculant, fitted quadratic and linear models, respectively. The lactic acid, propionic acid and butyric acid contents were not influenced by the elephant grass ratios, while the acetic acid content, for the non-inoculated silages, and ethanol decreased linearly with the increase in elephant grass. The ratio of 25% sugarcane and 75% elephant grass improves the nutritional value and increases the silage DM recovery, because of the lower effluent and gas productions. The homofermentative bacterial inoculant does not affect the sugarcane silage.


Sign in / Sign up

Export Citation Format

Share Document