Hepatopancreas transcriptome analysis reveals the molecular responses to different dietary n-3 PUFA lipid sources in the swimming crab Portunus trituberculatus

Aquaculture ◽  
2021 ◽  
Vol 543 ◽  
pp. 737016
Author(s):  
Fang Fang ◽  
Ye Yuan ◽  
Min Jin ◽  
Bo Shi ◽  
Tingting Zhu ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Jingyan Zhang ◽  
Mengqian Zhang ◽  
Nishad Jayasundara ◽  
Xianyun Ren ◽  
Baoquan Gao ◽  
...  

Ammonia is a common environmental stressor encountered during aquaculture, and is a significant concern due to its adverse biological effects on vertebrate and invertebrate including crustaceans. However, little information is available on physiological and molecular responses in crustaceans under long-term ammonia exposure, which often occurs in aquaculture practices. Here, we investigated temporal physiological and molecular responses in the gills, the main ammonia excretion organ, of the swimming crab Portunus trituberculatus following long-term (4 weeks) exposure to three different ammonia nitrogen concentrations (2, 4, and 8 mg l–1), in comparison to seawater (ammonia nitrogen below 0.03 mg l–1). The results revealed that after ammonia stress, the ammonia excretion and detoxification pathways were initially up-regulated. These processes appear compromised as the exposure duration extended, leading to accumulation of hemolymph ammonia, which coincided with the reduction of adenosine 5′-triphosphate (ATP) and adenylate energy charge (AEC). Considering that ammonia excretion and detoxification are highly energy-consuming, the depression of these pathways are, at least partly, associated with disruption of energy homeostasis in gills after prolonged ammonia exposure. Furthermore, our results indicated that long-term ammonia exposure can impair the antioxidant defense and result in increased lipid peroxidation, as well as induce endoplasmic reticulum stress, which in turn lead to apoptosis through p53-bax pathway in gills of the swimming crab. The findings of the present study further our understanding of adverse effects and underlying mechanisms of long-term ammonia in decapods, and provide valuable information for aquaculture management of P. trituberculatus.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gengxin Hao ◽  
Yanyu Hu ◽  
Linfan Shi ◽  
Jun Chen ◽  
Aixiu Cui ◽  
...  

AbstractThe physicochemical properties of chitosan obtained from the shells of swimming crab (Portunus trituberculatus) and prepared via subcritical water pretreatment were examined. At the deacetylation temperature of 90 °C, the yield, ash content, and molecular weight of chitosan in the shells prepared via subcritical water pretreatment were 12.2%, 0.6%, and 1187.2 kDa, respectively. These values were lower than those of shells prepared via sodium hydroxide pretreatment. At the deacetylation temperature of 120 °C, a similar trend was observed in chitosan molecular weight, but differences in chitosan yield and ash content were not remarkable. At the same deacetylation temperature, the structures of chitosan prepared via sodium hydroxide and subcritical water pretreatments were not substantially different. However, the compactness and thermal stability of chitosan prepared via sodium hydroxide pretreatment was lower than those of chitosan prepared via subcritical water pretreatment. Compared with the chitosan prepared by sodium hydroxide pretreatment, the chitosan prepared by subcritical water pretreatment was easier to use in preparing oligosaccharides, including (GlcN)2, via enzymatic hydrolysis with chitosanase. Results suggested that subcritical water pretreatment can be potentially used for the pretreatment of crustacean shells. The residues obtained via this method can be utilized to prepare chitosan.


2021 ◽  
Vol 20 ◽  
pp. 100731
Author(s):  
Junkai Lu ◽  
Ronghua Li ◽  
Michaël Bekaert ◽  
Herve Migaud ◽  
Xiao Liu ◽  
...  

1994 ◽  
Vol 25 (1) ◽  
pp. 50-54 ◽  
Author(s):  
Kiyokuni Muroga ◽  
Kouji Sszuik ◽  
Kkatswa Ishimaru ◽  
Kinya Nogami

Sign in / Sign up

Export Citation Format

Share Document