CC chemokines and their receptors in black rockfish (Sebastes schlegelii): Characterization, evolutionary analysis, and expression patterns after Aeromonas Salmonicida infection

Aquaculture ◽  
2022 ◽  
Vol 546 ◽  
pp. 737377
Author(s):  
Qiang Fu ◽  
Yuqing Li ◽  
Shoucong Zhao ◽  
Min Cao ◽  
Ning Yang ◽  
...  
BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jianshuang Li ◽  
Likang Lyu ◽  
Haishen Wen ◽  
Yun Li ◽  
Xiaojie Wang ◽  
...  

Abstract Background The black rockfish (Sebastes schlegelii) has an ovoviviparous reproductive pattern and long-term sperm storage, resulting in asynchronous gonadal development between the sexes. However, the comprehensive understanding of gonadal development in black rockfish has not yet been achieved. Here, we studied gonadal development and germ cell renewal using histology and RNA-seq. Results In this study, RNA-seq was performed on testes and ovaries to characterize key pathways and genes that are active during development and gamete maturation in black rockfish. Differentially expressed genes (DEGs) were identified and annotated in 4 comparisons (F_III vs. F_IV, F_IV vs. F_V, M_III vs. M_IV and M_IV vs. M_V). Based on analysis of DEGs enriched in the testis, 11 and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were mapped to the M_III vs. M_IV group and the M_IV vs. M_V group, respectively. DEGs in ovarian development were also classified into 10 groups according to their biological functions. The expression patterns of the selected genes determined by qPCR were significantly correlated with the RNA-Seq results, supporting the reliability and accuracy of the RNA-Seq analysis. E2 levels showed down regulation from previtellogenesis to mature stage in female and T level showed down regulation from spermatogenesis to regressed stage in the male. Conclusions The categories “intercellular interaction and cytoskeleton”, “molecule amplification” and “repair in the cell cycle” were revealed to be crucial in testis development and spermatogenesis, as was the biosynthesis of a series of metabolites. Our results provide comprehensive insight into black rockfish gonadal development and provide a basis for further study of reproductive physiology and molecular biology in ovoviviparity teleosts.


Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 808
Author(s):  
Chaofan Jin ◽  
Mengya Wang ◽  
Weihao Song ◽  
Xiangfu Kong ◽  
Fengyan Zhang ◽  
...  

Myosins are important eukaryotic motor proteins that bind actin and utilize the energy of ATP hydrolysis to perform a broad range of functions such as muscle contraction, cell migration, cytokinesis, and intracellular trafficking. However, the characterization and function of myosin is poorly studied in teleost fish. In this study, we identified 60 myosin family genes in a marine teleost, black rockfish (Sebastes schlegelii), and further characterized their expression patterns. myosin showed divergent expression patterns in adult tissues, indicating they are involved in different types and compositions of muscle fibers. Among 12 subfamilies, S. schlegelii myo2 subfamily was significantly expanded, which was driven by tandem duplication events. The up-regulation of five representative genes of myo2 in the skeletal muscle during fast-growth stages of juvenile and adult S. schlegelii revealed their active role in skeletal muscle fiber synthesis. Moreover, the expression regulation of myosin during the process of myoblast differentiation in vitro suggested that they contribute to skeletal muscle growth by involvement of both myoblast proliferation and differentiation. Taken together, our work characterized myosin genes systemically and demonstrated their diverse functions in a marine teleost species. This lays foundation for the further studies of muscle growth regulation and molecular mechanisms of indeterminate skeletal muscle growth of large teleost fishes.


2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Yu-Ra Kang ◽  
Ahran Kim ◽  
Yoonhang Lee ◽  
Nameun Kim ◽  
HeyongJin Roh ◽  
...  

ABSTRACT We report the complete genome sequence of the virulent Aeromonas salmonicida subsp. masoucida strain BR19001YR, isolated from diseased black rockfish (Sebastes schlegelii). Sequencing of the circular chromosome and three plasmids using the PacBio and Illumina platforms yielded 4,982,192 bp with a 58.24% G+C content.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1015
Author(s):  
Min Zhang ◽  
Min Cao ◽  
Yunji Xiu ◽  
Qiang Fu ◽  
Ning Yang ◽  
...  

The black rockfish, Sebastes schlegelii, is a typical viviparous teleost, which belongs to the family Scorpaenidae. Due to its high economic and ecological values, S. schlegelii has been widely cultured in East Asian countries. With the enlargement of cultivation scale, bacterial and viral diseases have become the main threats to the farming industry of S. schlegelii, which have resulted in significant economic losses. In this study, Illumina shotgun sequencing, single-molecule real-time (SMRT) sequencing, 10x genomics and high-throughput chromosome conformation capture (Hi-C) technologies were collectively applied to assemble the genome of S. schlegelii. Then, we identified the antimicrobial peptide genes (AMPs) in the S. schlegelii genome. In total, 214 AMPs were identified in the S. schlegelii genome, which can be divided into 33 classes according to the annotation and cataloging of the Antimicrobial Peptides Database (APD3). Among these AMPs, thrombin-derived C-terminal peptide (TCP) was the dominant type, followed by RegIIIgamma and chemokine. The amino acid sequences of the TCP, cgUbiquitin, RegIIIalpha, RegIIIgamma, chemokine shared 32.55%, 42.63%, 29.87%, 28.09%, and 32.15% similarities among the same type in S. schlegelii. Meanwhile, the expression patterns of these AMPs in nine healthy tissues and at different infection time points in intestine were investigated. The results showed that the numbers and types of AMPs that responded to Edwardsiella tarda infection gradually increased as the infection progressed. In addition, we analyzed the phylogenetic relationships of hepcidins in teleost. The identification of AMPs based on the whole genome could provide a comprehensive database of potential AMPs, and benefit for the understanding of the molecular mechanisms of immune responses to E. tarda infection in S. schlegelii. This would further offer insights into an accurate and effective design and development of AMP for aquaculture therapy in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jingjing Niu ◽  
Weihao Song ◽  
Rui Li ◽  
Haiyang Yu ◽  
Jian Guan ◽  
...  

Abstract Background Black rockfish (Sebastes schlegelii) is a viviparous teleost. We proposed that the rockfish ovarian wall had a similar function to the uterus of mammals previously. In the present study, the well-developed vascular system was observed in the ovarian wall and the exterior surface of the egg membrane. In gestation, adaptation of the ovary vasculature to the rising needs of the embryos occurs through both vasodilation and neovascularization. Bdkrb2, encoding a receptor for bradykinin, plays a critical role in the control of vasodilatation by regulating nitric oxide production. Results Eight Bdkrb2 genes were identified in the black rockfish genome. These genes were located on chromosome 14, which are arranged in a tandem array, forming a gene cluster spanning 50 kb. Protein structure prediction, phylogenetic analysis, and transcriptome analysis showed that eight Bdkrb2 genes evolved two kinds of protein structure and three types of tissue expression pattern. Overexpression of two Bdkrb2 genes in zebrafish indicated a role of them in blood vessel formation or remodeling, which is an important procedure for the viviparous rockfish getting prepared for fertilization and embryos implantation. Conclusions Our study characterizes eight Bdrkb2 genes in the black rockfish, which may contribute to preparation for fertilization and embryo implantation. This research provides a novel view of viviparity adaptation and lays the groundwork for future research into vascular regulation of ovarian tissue in the breeding cycle in black rockfish.


Sign in / Sign up

Export Citation Format

Share Document