scholarly journals Genome-Wide Identification, Characterization and Expression Profiling of myosin Family Genes in Sebastes schlegelii

Genes ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 808
Author(s):  
Chaofan Jin ◽  
Mengya Wang ◽  
Weihao Song ◽  
Xiangfu Kong ◽  
Fengyan Zhang ◽  
...  

Myosins are important eukaryotic motor proteins that bind actin and utilize the energy of ATP hydrolysis to perform a broad range of functions such as muscle contraction, cell migration, cytokinesis, and intracellular trafficking. However, the characterization and function of myosin is poorly studied in teleost fish. In this study, we identified 60 myosin family genes in a marine teleost, black rockfish (Sebastes schlegelii), and further characterized their expression patterns. myosin showed divergent expression patterns in adult tissues, indicating they are involved in different types and compositions of muscle fibers. Among 12 subfamilies, S. schlegelii myo2 subfamily was significantly expanded, which was driven by tandem duplication events. The up-regulation of five representative genes of myo2 in the skeletal muscle during fast-growth stages of juvenile and adult S. schlegelii revealed their active role in skeletal muscle fiber synthesis. Moreover, the expression regulation of myosin during the process of myoblast differentiation in vitro suggested that they contribute to skeletal muscle growth by involvement of both myoblast proliferation and differentiation. Taken together, our work characterized myosin genes systemically and demonstrated their diverse functions in a marine teleost species. This lays foundation for the further studies of muscle growth regulation and molecular mechanisms of indeterminate skeletal muscle growth of large teleost fishes.

Author(s):  
Paul J. Rozance ◽  
Stephanie R Wesolowski ◽  
Sonnet S. Jonker ◽  
Laura D Brown

Fetal skeletal muscle growth requires myoblast proliferation, differentiation, and fusion into myofibers in addition to protein accretion for fiber hypertrophy. Oxygen is an important regulator of this process. Therefore, we hypothesized that fetal anemic hypoxemia would inhibit skeletal muscle growth. Studies were performed in late gestation fetal sheep that were bled to anemic, and therefore hypoxemic, conditions beginning at ~125 days of gestation (term = 148 days) for 9 ± 0 days (n=19) and compared to control fetuses (n=16). A metabolic study was performed on gestational day ~134 to measure fetal protein kinetic rates. Myoblast proliferation and myofiber area were determined in biceps femoris (BF), tibialis anterior (TA), and flexor digitorum superficialis (FDS) muscles. mRNA expression of muscle regulatory factors was determined in BF. Fetal arterial hematocrit and oxygen content were 28% and 52% lower, respectively, in anemic fetuses. Fetal weight and whole-body protein synthesis, breakdown, and accretion rates were not different between groups. Hindlimb length, however, was 7% shorter in anemic fetuses. TA and FDS muscles weighed less and FDS myofiber area was smaller in anemic fetuses compared to controls. The percentage of Pax7+ myoblasts that expressed Ki67 was lower in BF and tended to be lower in FDS from anemic fetuses indicating reduced myoblast proliferation. There was less MYOD and MYF6 mRNA expression in anemic vs. control BF consistent with reduced myoblast differentiation. These results indicate that fetal anemic hypoxemia reduced muscle growth. We speculate that fetal muscle growth may be improved by strategies that increase oxygen availability.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 970 ◽  
Author(s):  
Ma ◽  
Jia ◽  
Chu ◽  
Fu ◽  
Lei ◽  
...  

DNA methylation modifications are implicated in many biological processes. As the most common epigenetic mechanism DNA methylation also affects muscle growth and development. The majority of previous studies have focused on different varieties of yak, but little is known about the epigenetic regulation mechanisms in different age groups of animals. The development of muscles in the different stages of yak growth remains unclear. In this study, we selected the longissimus dorsi muscle tissue at three different growth stages of the yak, namely, 90-day-old fetuses (group E), six months old (group M), and three years old (group A). Using RNA-Seq transcriptome sequencing and methyl-RAD whole-genome methylation sequencing technology, changes in gene expression levels and DNA methylation status throughout the genome were investigated during the stages of yak development. Each group was represented by three biological replicates. The intersections of expression patterns of 7694 differentially expressed genes (DEGs) were identified (padj < 0.01, |log2FC| > 1.2) at each of the three developmental periods. Time-series expression profile clustering analysis indicated that the DEGs were significantly arranged into eight clusters which could be divided into two classes (padj < 0.05), class I profiles that were downregulated and class II profiles that were upregulated. Based on this cluster analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DEGs from class I profiles were significantly (padj < 0.05) enriched in 21 pathways, the most enriched pathway being the Axon guidance signaling pathway. DEGs from the class II profile were significantly enriched in 58 pathways, the pathway most strongly enriched being Metabolic pathway. After establishing the methylation profiles of the whole genomes, and using two groups of comparisons, the three combinations of groups (M-vs.-E, M-vs.-A, A-vs.-E) were found to have 1344, 822, and 420 genes, respectively, that were differentially methylated at CCGG sites and 2282, 3056, and 537 genes, respectively, at CCWGG sites. The two sets of data were integrated and the negative correlations between DEGs and differentially methylated promoters (DMPs) analyzed, which confirmed that TMEM8C, IGF2, CACNA1S and MUSTN1 were methylated in the promoter region and that expression of the modified genes was negatively correlated. Interestingly, these four genes, from what was mentioned above, perform vital roles in yak muscle growth and represent a reference for future genomic and epigenomic studies in muscle development, in addition to enabling marker-assisted selection of growth traits.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chrystalla Mytidou ◽  
Andrie Koutsoulidou ◽  
Margarita Zachariou ◽  
Marianna Prokopi ◽  
Konstantinos Kapnisis ◽  
...  

Skeletal muscle growth and maintenance depend on two tightly regulated processes, myogenesis and muscle regeneration. Both processes involve a series of crucial regulatory molecules including muscle-specific microRNAs, known as myomiRs. We recently showed that four myomiRs, miR-1, miR-133a, miR-133b, and miR-206, are encapsulated within muscle-derived exosomes and participate in local skeletal muscle communication. Although these four myomiRs have been extensively studied for their function in muscles, no information exists regarding their endogenous and exosomal levels across age. Here we aimed to identify any age-related changes in the endogenous and muscle-derived exosomal myomiR levels during acute skeletal muscle growth. The four endogenous and muscle-derived myomiRs were investigated in five skeletal muscles (extensor digitorum longus, soleus, tibialis anterior, gastrocnemius, and quadriceps) of 2-week–1-year-old wild-type male mice. The expression of miR-1, miR-133a, and miR-133b was found to increase rapidly until adolescence in all skeletal muscles, whereas during adulthood it remained relatively stable. By contrast, endogenous miR-206 levels were observed to decrease with age in all muscles, except for soleus. Differential expression of the four myomiRs is also inversely reflected on the production of two protein targets; serum response factor and connexin 43. Muscle-derived exosomal miR-1, miR-133a, and miR-133b levels were found to increase until the early adolescence, before reaching a plateau phase. Soleus was found to be the only skeletal muscle to release exosomes enriched in miR-206. In this study, we showed for the first time an in-depth longitudinal analysis of the endogenous and exosomal levels of the four myomiRs during skeletal muscle development. We showed that the endogenous expression and extracellular secretion of the four myomiRs are associated to the function and size of skeletal muscles as the mice age. Overall, our findings provide new insights for the myomiRs’ significant role in the first year of life in mice.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1015
Author(s):  
Min Zhang ◽  
Min Cao ◽  
Yunji Xiu ◽  
Qiang Fu ◽  
Ning Yang ◽  
...  

The black rockfish, Sebastes schlegelii, is a typical viviparous teleost, which belongs to the family Scorpaenidae. Due to its high economic and ecological values, S. schlegelii has been widely cultured in East Asian countries. With the enlargement of cultivation scale, bacterial and viral diseases have become the main threats to the farming industry of S. schlegelii, which have resulted in significant economic losses. In this study, Illumina shotgun sequencing, single-molecule real-time (SMRT) sequencing, 10x genomics and high-throughput chromosome conformation capture (Hi-C) technologies were collectively applied to assemble the genome of S. schlegelii. Then, we identified the antimicrobial peptide genes (AMPs) in the S. schlegelii genome. In total, 214 AMPs were identified in the S. schlegelii genome, which can be divided into 33 classes according to the annotation and cataloging of the Antimicrobial Peptides Database (APD3). Among these AMPs, thrombin-derived C-terminal peptide (TCP) was the dominant type, followed by RegIIIgamma and chemokine. The amino acid sequences of the TCP, cgUbiquitin, RegIIIalpha, RegIIIgamma, chemokine shared 32.55%, 42.63%, 29.87%, 28.09%, and 32.15% similarities among the same type in S. schlegelii. Meanwhile, the expression patterns of these AMPs in nine healthy tissues and at different infection time points in intestine were investigated. The results showed that the numbers and types of AMPs that responded to Edwardsiella tarda infection gradually increased as the infection progressed. In addition, we analyzed the phylogenetic relationships of hepcidins in teleost. The identification of AMPs based on the whole genome could provide a comprehensive database of potential AMPs, and benefit for the understanding of the molecular mechanisms of immune responses to E. tarda infection in S. schlegelii. This would further offer insights into an accurate and effective design and development of AMP for aquaculture therapy in the future.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanping Wang ◽  
Jiying Wang ◽  
Hongmei Hu ◽  
Huaizhong Wang ◽  
Cheng Wang ◽  
...  

Abstract Background Skeletal muscle growth and development are closely associated with the quantity and quality of pork production. We performed a transcriptomic analysis of 12 Longissimus dorsi muscle samples from Tibetan piglets at four postnatal stages of 0, 14, 30, and 60 days using RNA sequencing. Results According to the pairwise comparisons between the libraries of the muscle samples at the four postnatal stages, a total of 4115 differentially expressed genes (DEGs) were identified in terms of |log2(fold change)| ≥ 1 and an adjusted P value < 0.01. Short-time series expression miner (STEM) analysis of the DEGs identified eight significantly different expression profiles, which were divided into two clusters based on the expression pattern. DEGs in cluster I displayed a pattern of decreasing to a nadir, and then a rise, and the significantly enriched gene ontology (GO) terms detected using them were involved in multiple processes, of which the cell cycle, immunocyte activation and proliferation, as well as actin cytoskeleton organization, were the top three overrepresented processes based on the GO terms functional classification. DEGs in cluster II displayed a pattern of increasing to a peak, then declining, which mainly contributed to protein metabolism. Furthermore, besides the pathways related to immune system, a few diseases, and protein metabolism, the DEGs in clusters I and II were significantly enriched in pathways related to muscle growth and development, such as the Rap1, PI3K-Akt, AMPK, and mTOR signaling pathways. Conclusions This study revealed GO terms and pathways that could affect the postnatal muscle growth and development in piglets. In addition, this study provides crucial information concerning the molecular mechanisms of muscle growth and development as well as an overview of the piglet transcriptome dynamics throughout the postnatal period in terms of growth and development.


2019 ◽  
Vol 99 (4) ◽  
pp. 867-880
Author(s):  
Xiaohong Guo ◽  
Wanfeng Zhang ◽  
Meng Li ◽  
Pengfei Gao ◽  
Wei Hei ◽  
...  

From the perspectives of promoting individual growth and development, increasing pork yield, and improving feed utilization, it is desirable to screen candidate genes underlying pig muscle growth and regulation. In this study, we investigated transcriptome differences at 1, 90, and 180 d of age in Large White and Mashen pigs, characterized differentially expressed genes (DEGs), and screened candidate genes affecting skeletal muscle growth and development. RNA-seq was applied to analyze the transcriptome of the longissimus dorsi (LD) in the two breeds. In LD samples from the two breeds at three growth stages, 7215, 6332, 237, 3935, 3404, and 846 DEGs were obtained for L01 vs. L90, L01 vs. L180, L90 vs. L180, MS01 vs. MS90, MS01 vs. MS180, and MS90 vs. MS180, respectively. Significant tendencies in DEG expression could be grouped into eight profiles. Based on the functional analysis of DEGs, 16 candidate genes related to skeletal muscle growth and development were identified, including PCK2, GNAS, ADCY2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, PHKA1, PHKA2, PHKG1, PHKG2, ITPR3, IGF1R, FGFR4, FGF1, and FGF18. The results of this study thus provide a theoretical basis for the mechanisms and candidate genes underlying skeletal muscle development in pigs.


2021 ◽  
Vol 22 (7) ◽  
pp. 3769
Author(s):  
Mengya Wang ◽  
Weihao Song ◽  
Chaofan Jin ◽  
Kejia Huang ◽  
Qianwen Yu ◽  
...  

Pax3 and Pax7 are members of the Pax gene family which are essential for embryo and organ development. Both genes have been proved to be markers of muscle satellite cells and play key roles in the process of muscle growth and repair. Here, we identified two Pax3 genes (SsPax3a and SsPax3b) and two Pax7 genes (SsPax7a and SsPax7b) in a marine teleost, black rockfish (Sebastes schlegelii). Our results showed SsPax3 and SsPax7 marked distinct populations of muscle satellite cells, which originated from the multi-cell stage and somite stage, respectively. In addition, we constructed a muscle injury model to explore the function of these four genes during muscle repair. Hematoxylin–eosin (H–E) of injured muscle sections showed new-formed myofibers occurred at 16 days post-injury (dpi). ISH (in situ hybridization) analysis demonstrated that the expression level of SsPax3a and two SsPax7 genes increased gradually during 0–16 dpi and peaked at 16 dpi. Interestingly, SsPax3b showed no significant differences during the injury repair process, indicating that the satellite cells labeled by SsPax3b were not involved in muscle repair. These results imply that the muscle stem cell populations in teleosts are more complicated than in mammals. This lays the foundation for future studies on the molecular mechanism of indeterminant growth and muscle repair of large fish species.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 334-334
Author(s):  
Zhi-wen Song ◽  
Cheng-long Jin ◽  
Mao Ye ◽  
Chun-qi Gao ◽  
Hui-chao Yan ◽  
...  

Abstract Apoptosis is programmed cell death that can be stimulated by external stress or nutrition restrictions. Lysine (Lys) is an essential amino acid for pig growth, and the relationship between Lys deficiency caused apoptosis and inhibition of skeletal muscle growth remains unknown. The objective of this study was to investigate whether apoptosis could be regulated by Lys supplementation and the potential mechanism. In current work, 30 male Duroc × Landrace × Large weaned piglets were divided randomly into 3 groups: control group (Lys 1.30%), Lys deficiency group (Lys 0.86%), and Lys rescue group (Lys 0.86%, 0-14d; 1.30%,15–28 d). The experiment lasted for 28 days, and on the morning of 29 d, piglets were slaughtered to collect samples. Isobaric tag for relative and absolute quantification (iTRAQ) proteomics analysis of the longissimus dorsi muscle showed that Janus family tyrosine kinase (JAK)-signal transducer and activator of transcription (STAT) pathway was involved in Lys deficiency-induced apoptosis and inhibited skeletal muscle growth. Meanwhile, western blotting results of the longissimus dorsi muscle demonstrated that Lys deficiency caused apoptosis (P &lt; 0.05) with the JAK2-STAT3 pathway inhibition (P &lt; 0.05). Interestingly, apoptosis was suppressed (P &lt; 0.05), and the JAK2-STAT3 pathway was reactivated (P &lt; 0.05) after Lys re-supplementation in longissimus dorsi muscle. In addition, results of satellite cells (SCs) isolated from the longissimus dorsi muscle of 5-day-old Landrace piglets showed that Lys deficiency-induced apoptosis (P &lt; 0.05) was mediated by the JAK2-STAT3 pathway inhibition (P &lt; 0.05). Moreover, the JAK2-STAT3 pathway was reactivated (P &lt; 0.05) by Lys re-supplementation and suppressed apoptosis in SCs (P &lt; 0.05), and this effect was blocked (P &lt; 0.05) after SCs treated with AG-490 (a specific inhibitor of JAK2). Collectively, Lys inhibited apoptosis in SCs to govern skeletal muscle growth via the JAK2-STAT3 pathway.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2311
Author(s):  
Hao Ding ◽  
Yueyue Lin ◽  
Tao Zhang ◽  
Lan Chen ◽  
Genxi Zhang ◽  
...  

The mechanisms behind the gene expression and regulation that modulate the development and growth of pigeon skeletal muscle remain largely unknown. In this study, we performed gene expression analysis on skeletal muscle samples at different developmental and growth stages using RNA sequencing (RNA−Seq). The differentially expressed genes (DEGs) were identified using edgeR software. Weighted gene co−expression network analysis (WGCNA) was used to identify the gene modules related to the growth and development of pigeon skeletal muscle based on DEGs. A total of 11,311 DEGs were identified. WGCNA aggregated 11,311 DEGs into 12 modules. Black and brown modules were significantly correlated with the 1st and 10th day of skeletal muscle growth, while turquoise and cyan modules were significantly correlated with the 8th and 13th days of skeletal muscle embryonic development. Four mRNA−mRNA regulatory networks corresponding to the four significant modules were constructed and visualised using Cytoscape software. Twenty candidate mRNAs were identified based on their connectivity degrees in the networks, including Abca8b, TCONS−00004461, VWF, OGDH, TGIF1, DKK3, Gfpt1 and RFC5, etc. A KEGG pathway enrichment analysis showed that many pathways were related to the growth and development of pigeon skeletal muscle, including PI3K/AKT/mTOR, AMPK, FAK, and thyroid hormone pathways. Five differentially expressed genes (LAST2, MYPN, DKK3, B4GALT6 and OGDH) in the network were selected, and their expression patterns were quantified by qRT−PCR. The results were consistent with our sequencing results. These findings could enhance our understanding of the gene expression and regulation in the development and growth of pigeon muscle.


Sign in / Sign up

Export Citation Format

Share Document