scholarly journals Study of adsorption property and mechanism of lead(II) and cadmium(II) onto sulfhydryl modified attapulgite

2021 ◽  
Vol 14 (2) ◽  
pp. 102960
Author(s):  
Cheng Fu ◽  
Xiaping Zhu ◽  
Xun Dong ◽  
Ping Zhao ◽  
Zepeng Wang
2010 ◽  
Vol 38 (3) ◽  
pp. 401-404
Author(s):  
Da-Wei LOU ◽  
Ying-Jie YANG ◽  
Guang HUANG ◽  
Ping-Li PU ◽  
Xin-Qing LEE ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1233
Author(s):  
Yueyi Wang ◽  
Shuangshuang Li ◽  
Fangting Bai ◽  
Junwei Cao ◽  
Lijun Sun

The effects of mixing orders of tannic acid (TA), starch, and α-amylase on the enzyme inhibition of TA were studied, including mixing TA with α-amylase before starch addition (order 1), mixing TA with pre-gelatinized starch before α-amylase addition (order 2) and co-gelatinizing TA with starch before α-amylase addition (order 3). It was found that the enzyme inhibition was always highest for order 1 because TA could bind with the enzyme active site thoroughly before digestion occurred. Both order 2 and 3 reduced α-amylase inhibition through decreasing binding of TA with the enzyme, which resulted from the non-covalent physical adsorption of TA with gelatinized starch. Interestingly, at low TA concentration, α-amylase inhibition for order 2 was higher than order 3, while at high TA concentration, the inhibition was shown with the opposite trend, which arose from the difference in the adsorption property between the pre-gelatinized and co-gelatinized starch at the corresponding TA concentrations. Moreover, both the crystalline structures and apparent morphology of starch were not significantly altered by TA addition for order 2 and 3. Conclusively, although a polyphenol has an acceptable inhibitory activity in vitro, the actual effect may not reach the expected one when taking processing procedures into account.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 156
Author(s):  
Manjing Lu ◽  
Jiaqi Wang ◽  
Yuzhong Wang ◽  
Zhengguang He

Chemical synthetic pharmaceutical wastewater has characteristics of high concentration, high toxicity and poor biodegradability, so it is difficult to directly biodegrade. We used acid modified attapulgite (ATP) supported Fe-Mn-Cu polymetallic oxide as catalyst for multi-phase Fenton-like ultraviolet photocatalytic oxidation (photo-Fenton) treatment with actual chemical synthetic pharmaceutical wastewater as the treatment object. The results showed that at the initial pH of 2.0, light distance of 20 cm, and catalyst dosage and hydrogen peroxide concentration of 10.0 g/L and 0.5 mol/L respectively, the COD removal rate of wastewater reached 65% and BOD5/COD increased to 0.387 when the reaction lasted for 180 min. The results of gas chromatography-mass spectrometry (GC-MS) indicated that Fenton-like reaction with Fe-Mn-Cu@ATP had good catalytic potential and significant synergistic effect, and could remove almost all heterocycle compounds well. 3D-EEM (3D electron microscope) fluorescence spectra showed that the fluorescence intensity decreased significantly during catalytic degradation, and the UV humus-like and fulvic acid were effectively removed. The degradation efficiency of the nanocomposite only decreased by 5.8% after repeated use for 6 cycles. It seems appropriate to use this process as a pre-treatment for actual pharmaceutical wastewater to facilitate further biological treatment.


2021 ◽  
Vol 45 (14) ◽  
pp. 6192-6205
Author(s):  
Haiqing Xu ◽  
Yuhang Gao ◽  
Qiantu Tao ◽  
Aiping Li ◽  
Zhanchao Liu ◽  
...  

The molecularly imprinted polymer prepared on the nanoreactor SBA-15 displayed excellent ordered mesoporous structure and superior adsorption property for salicylic acid.


1998 ◽  
Vol 106 (1229) ◽  
pp. 79-83 ◽  
Author(s):  
Yukichi SASAKI ◽  
Toshiyuki SUZUKI ◽  
Isao TATEYAMA ◽  
Yukari ISIKAWA ◽  
Akira SAJI ◽  
...  

2010 ◽  
Vol 108 (6) ◽  
pp. 064303 ◽  
Author(s):  
Min Ha Lee ◽  
Kyung Tae Kim ◽  
Thomas Gemming ◽  
Daniel J. Sordelet ◽  
Jürgen Eckert

2012 ◽  
Vol 512-515 ◽  
pp. 1980-1985
Author(s):  
Ya Jun Luo ◽  
Xue Li ◽  
Xiao Li Hu ◽  
Deng Liang He ◽  
Peng Lin

SiO2aerogel is prepared under normal conditions by taking tetraethyl orthosilicate (TEOS) as the silica source, N-hexane as the displacer, trimethylchlorosilane hexane as the modifier and hydrolysis environment provided by hydrochloric acid and ammonia water. The effect of pH value, time, temperature, initial concentration on the adsorption of nitrobenzene by aerogel has been studied. The results show that the best range of the pH value for adsorption is 10.72. When adsorption time is 100 min, adsorption equilibrium can be reached. The best temperature for adsorption is 40 °C. The adsorption capacity becomes larger with the concentration increasing of the nitrobenzene solution. When the concentration reaches 500 mg/L, the adsorption reaches 32.402 mg/g. The adsorption equation matches Langmuir model. Scanning Electron Microscopes (SEM), infrared absorption spectrum and specific surface area measurements have shown that the adsorption property of SiO2aerogel for the nitrobenzene is related to cellular structure of the aerogel and large specific surface area.


2013 ◽  
Vol 442 (1-3) ◽  
pp. S455-S460 ◽  
Author(s):  
Yoshinori Kawamura ◽  
Yasunori Iwai ◽  
Kenzo Munakata ◽  
Toshihiko Yamanishi

Sign in / Sign up

Export Citation Format

Share Document