PO-19 SIGNIFICANT BASAL AND STIMULATED VARIATIONS IN INFLAMMATORY GENE EXPRESSION PROFILES IN AFRICAN AMERICAN AND CAUCASIAN HUVECS

2014 ◽  
Vol 8 (4) ◽  
pp. 173
Author(s):  
Marc D. Cook ◽  
Michael Brown
Author(s):  
Mario C. Manresa ◽  
Amanda Wu ◽  
Quan M. Nhu ◽  
Austin W. T. Chiang ◽  
Kevin Okamoto ◽  
...  

AbstractFibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTβR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTβR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTβR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT’s transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTβR-NIK-p52 NF-κB dominant pathway.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Katherine R. Dobbs ◽  
Paula Embury ◽  
Emmily Koech ◽  
Sidney Ogolla ◽  
Stephen Munga ◽  
...  

Abstract Background Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profiles in monocytes from young adults and children from western Kenya. Results We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles. Conclusions These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.


Author(s):  
Corbin S.C. Johnson ◽  
Carol A. Shively ◽  
Kristofer T. Michalson ◽  
Amanda J. Lea ◽  
Ryne J. DeBo ◽  
...  

AbstractWestern diet consumption is associated with inflammation, cardiometabolic disease, and mortality in humans, while Mediterranean diet consumption confers protective effects. One likely pathway for this association is through environmentally induced changes in monocyte function, yet the underlying mechanisms remain elusive. We conducted the first randomized, long-term diet manipulation in a non-human primate model to determine whether Western- or Mediterranean-like diets alter monocyte polarization and health. Monocyte gene expression profiles differed markedly between the two diet groups, with significant differences in over 40% of expressed genes. The Western diet induced a more proinflammatory monocyte phenotype overall and upregulated specific monocyte polarization genes. Diet also disrupted the coexpression of numerous gene pairs, including small RNAs and transcription factors associated with metabolism and adiposity in humans. Diet altered affiliative and anxiety-associated behaviors and mediation analysis showed that the diet-altered behaviors contributed significantly (∼50% of the effect of diet on gene expression) to 25% of the differentially expressed genes, suggesting that diet effects on central mechanisms also modulate monocyte gene expression. Together, these results identify both behavioral and molecular mechanisms underlying the health benefits of a Mediterranean diet regimen.Significance StatementSome of our largest public health burdens are driven by dietary changes associated with industrialization, but we still know very little about the molecular mechanisms underlying this link. Characteristic “Western diets” have been associated with increased risk for diseases related to chronic inflammation, while Mediterranean diets have anti-inflammatory benefits. Here, we identify causal effects of diet on inflammatory gene expression where consumption of the Mediterranean diet reduced inflammatory gene expression in monocytes. Additionally, our diet manipulation induced behavioral changes associated with anxiety and social integration, where Mediterranean-fed animals exhibited more positive affiliative behaviors and reduced anxiety. These behaviors were associated with 25% of the diet-affected genes, suggesting an important behavioral route through which diet can impact immune function.


2019 ◽  
Vol 40 (4) ◽  
pp. 747-759 ◽  
Author(s):  
Yan Wang ◽  
Ying Luo ◽  
Yang Yao ◽  
Yuhua Ji ◽  
Liangshu Feng ◽  
...  

Long noncoding RNAs (lncRNA) expression profiles change in the ischemic brain after stroke, but their roles in specific cell types after stroke have not been studied. We tested the hypothesis that lncRNA modulates brain injury by altering macrophage functions. Using RNA deep sequencing, we identified 73 lncRNAs that were differentially expressed in monocyte-derived macrophages (MoDMs) and microglia-derived macrophages (MiDMs) isolated in the ischemic brain three days after stroke. Among these, the lncRNA, GM15628, is highly expressed in pro-inflammatory MoDMs but not in MiDMs, and are functionally related to its neighbor gene, lymphocyte cytosolic protein 1 (LCP1), which plays a role in maintaining cell shape and cell migration. We termed this lncRNA as Macrophage contained LCP1 related pro-inflammatory lncRNA, Maclpil. Using cultured macrophages polarized by LPS, M(LPS), we found that downregulation of Maclpil in M(LPS) decreased pro-inflammatory gene expression while promoting anti-inflammatory gene expression. Maclpil inhibition also reduced the migration and phagocytosis ability of MoDMs by inhibiting LCP1. Furthermore, adoptive transfer of Maclpil silenced M(LPS), reduced ischemic brain infarction, improved behavioral performance and attenuated penetration of MoDMs in the ischemic hemisphere. We conclude that by blocking macrophage, Maclpil protects against acute ischemic stroke by inhibiting neuroinflammation.


Sign in / Sign up

Export Citation Format

Share Document