scholarly journals Silencing the lncRNA Maclpil in pro-inflammatory macrophages attenuates acute experimental ischemic stroke via LCP1 in mice

2019 ◽  
Vol 40 (4) ◽  
pp. 747-759 ◽  
Author(s):  
Yan Wang ◽  
Ying Luo ◽  
Yang Yao ◽  
Yuhua Ji ◽  
Liangshu Feng ◽  
...  

Long noncoding RNAs (lncRNA) expression profiles change in the ischemic brain after stroke, but their roles in specific cell types after stroke have not been studied. We tested the hypothesis that lncRNA modulates brain injury by altering macrophage functions. Using RNA deep sequencing, we identified 73 lncRNAs that were differentially expressed in monocyte-derived macrophages (MoDMs) and microglia-derived macrophages (MiDMs) isolated in the ischemic brain three days after stroke. Among these, the lncRNA, GM15628, is highly expressed in pro-inflammatory MoDMs but not in MiDMs, and are functionally related to its neighbor gene, lymphocyte cytosolic protein 1 (LCP1), which plays a role in maintaining cell shape and cell migration. We termed this lncRNA as Macrophage contained LCP1 related pro-inflammatory lncRNA, Maclpil. Using cultured macrophages polarized by LPS, M(LPS), we found that downregulation of Maclpil in M(LPS) decreased pro-inflammatory gene expression while promoting anti-inflammatory gene expression. Maclpil inhibition also reduced the migration and phagocytosis ability of MoDMs by inhibiting LCP1. Furthermore, adoptive transfer of Maclpil silenced M(LPS), reduced ischemic brain infarction, improved behavioral performance and attenuated penetration of MoDMs in the ischemic hemisphere. We conclude that by blocking macrophage, Maclpil protects against acute ischemic stroke by inhibiting neuroinflammation.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S5-S6
Author(s):  
Ryan Frieler ◽  
Thomas Vigil ◽  
Richard Mortensen ◽  
Yatrik Shah

Abstract Background Inflammation is a hallmark of inflammatory bowel disease and alterations in tricarboxylic acid cycle (TCA) metabolism have been identified as major regulators of immune cell phenotype during inflammation and hypoxia. The TCA cycle metabolite, itaconate, is produced by the enzyme aconitate decarboxylase 1 (Acod1) and is highly upregulated during classical macrophage activation and during experimental colitis. Itaconate and cell permeable derivatives have robust anti-inflammatory effects on macrophages, therefore we hypothesized that Acod1-produced itaconate has a protective, anti-inflammatory effect during experimental colitis. Methods and Results Wild type (WT) control and Acod1-/- mice were administered 3% Dextran Sulfate Sodium (DSS) in water for 7 days to induce experimental colitis. After DSS was discontinued, Acod1-/- mice had significantly reduced body weight recovery with increased macroscopic disease severity, and upon dissection had decreased colon length and more severe inflammation. To determine if myeloid cells are the critical Acod1/itaconate-producing cell types, we generated myeloid-specific Acod1 deficient mice, however no differences in weight loss, colon length or inflammatory gene expression were detected compared to WT controls. To test whether supplementation with exogenous itaconate could ameliorate colitis, WT mice were treated with the cell-permeable form of itaconate, dimethyl itaconate (DMI). Administration of DMI significantly improved recovery after 7 days of DSS treatment and significantly reduced inflammatory gene expression in the colon. Conclusion Our data suggest that Acod1-produced itaconate has an important role in the regulation of inflammation during experimental colitis. Although myeloid cells have been thought to be major producers of Acod1 and itaconate, our data indicate that other cell types are involved. These results highlight the importance of this immunometabolic pathway and suggest that preservation or enhancement of this pathway with natural metabolites or metabolite derivatives could have beneficial effects during colitis.


Author(s):  
Alicia M. Barnett ◽  
Jane A. Mullaney ◽  
Charlotte Hendriks ◽  
Lisa Le Borgne ◽  
Warren C. McNabb ◽  
...  

The development of alternative in vitro culture methods has increased in the last decade as three-dimensional organoids of various tissues, including those of the small and large intestines. Due to their multicellular composition, organoids offer advantages over traditionally used immortalized or primary cell lines. However, organoids must be accurate models of their tissues of origin. This study compared gene expression profiles with respect to markers of specific cell-types (stem-cells, enterocytes, goblet and enteroendocrine cells) and barrier maturation (tight junctions) of colonoid and enteroid cultures with their tissues of origin, and colonoids with enteroids. Colonoids derived from three healthy pigs formed multi-lobed structures with a monolayer of cells similar to the crypt structures in colonic tissue. Colonoid and enteroid gene expression signatures were more similar to those found for the tissues of their origin than to each other. However, relative to their derived tissues, organoids had increased gene expression levels of stem-cell markers Sox9 and Lgr5 encoding Sex determining region Y-box 9 and leucine-rich repeat-containing G-protein coupled rector 5, respectively. In contrast, expression levels of Occl and Zo1 encoding occludin and zonula occludens 1 respectively, were decreased. Expression levels of the cell lineage markers Atoh1, Cga and Muc2 encoding atonal homolog 1, chromogranin A and mucin 2 respectively, were decreased in colonoids, while Sglt1 and Apn encoding sodium-glucose transporter 1 and aminopeptidase A respectively, were decreased in enteroids. These results indicate colonoid and enteroid cultures were predominantly comprised of undifferentiated cell-types with decreased barrier maturation relative to their tissues of origin.


2019 ◽  
Author(s):  
Arnav Moudgil ◽  
Michael N. Wilkinson ◽  
Xuhua Chen ◽  
June He ◽  
Alex J. Cammack ◽  
...  

AbstractIn situ measurements of transcription factor (TF) binding are confounded by cellular heterogeneity and represent averaged profiles in complex tissues. Single cell RNA-seq (scRNA-seq) is capable of resolving different cell types based on gene expression profiles, but no technology exists to directly link specific cell types to the binding pattern of TFs in those cell types. Here, we present self-reporting transposons (SRTs) and their use in single cell calling cards (scCC), a novel assay for simultaneously capturing gene expression profiles and mapping TF binding sites in single cells. First, we show how the genomic locations of SRTs can be recovered from mRNA. Next, we demonstrate that SRTs deposited by the piggyBac transposase can be used to map the genome-wide localization of the TFs SP1, through a direct fusion of the two proteins, and BRD4, through its native affinity for piggyBac. We then present the scCC method, which maps SRTs from scRNA-seq libraries, thus enabling concomitant identification of cell types and TF binding sites in those same cells. As a proof-of-concept, we show recovery of cell type-specific BRD4 and SP1 binding sites from cultured cells. Finally, we map Brd4 binding sites in the mouse cortex at single cell resolution, thus establishing a new technique for studying TF biology in situ.


2019 ◽  
Author(s):  
Chen-Hao Chen ◽  
Rongbin Zheng ◽  
Jingyu Fan ◽  
Myles Brown ◽  
Jun S. Liu ◽  
...  

AbstractTo characterize the genomic distances over which transcription factors (TFs) influence gene expression, we examined thousands of TF and histone modification ChIP-seq datasets and thousands of gene expression profiles. A model integrating these data revealed two classes of TF: one with short-range regulatory influence, the other with long-range regulatory influence. The two TF classes also had distinct chromatin-binding preferences and auto-regulatory properties. The regulatory range of a single TF bound within different topologically associating domains (TADs) depended on intrinsic TAD properties such as local gene density and G/C content, but also on the TAD chromatin state in specific cell types. Our results provide evidence that most TFs belong to one of these two functional classes, and that the regulatory range of long-range TFs is chromatin-state dependent. Thus, consideration of TF type, distance-to-target, and chromatin context is likely important in identifying TF regulatory targets and interpreting GWAS and eQTL SNPs.


Author(s):  
Corbin S.C. Johnson ◽  
Carol A. Shively ◽  
Kristofer T. Michalson ◽  
Amanda J. Lea ◽  
Ryne J. DeBo ◽  
...  

AbstractWestern diet consumption is associated with inflammation, cardiometabolic disease, and mortality in humans, while Mediterranean diet consumption confers protective effects. One likely pathway for this association is through environmentally induced changes in monocyte function, yet the underlying mechanisms remain elusive. We conducted the first randomized, long-term diet manipulation in a non-human primate model to determine whether Western- or Mediterranean-like diets alter monocyte polarization and health. Monocyte gene expression profiles differed markedly between the two diet groups, with significant differences in over 40% of expressed genes. The Western diet induced a more proinflammatory monocyte phenotype overall and upregulated specific monocyte polarization genes. Diet also disrupted the coexpression of numerous gene pairs, including small RNAs and transcription factors associated with metabolism and adiposity in humans. Diet altered affiliative and anxiety-associated behaviors and mediation analysis showed that the diet-altered behaviors contributed significantly (∼50% of the effect of diet on gene expression) to 25% of the differentially expressed genes, suggesting that diet effects on central mechanisms also modulate monocyte gene expression. Together, these results identify both behavioral and molecular mechanisms underlying the health benefits of a Mediterranean diet regimen.Significance StatementSome of our largest public health burdens are driven by dietary changes associated with industrialization, but we still know very little about the molecular mechanisms underlying this link. Characteristic “Western diets” have been associated with increased risk for diseases related to chronic inflammation, while Mediterranean diets have anti-inflammatory benefits. Here, we identify causal effects of diet on inflammatory gene expression where consumption of the Mediterranean diet reduced inflammatory gene expression in monocytes. Additionally, our diet manipulation induced behavioral changes associated with anxiety and social integration, where Mediterranean-fed animals exhibited more positive affiliative behaviors and reduced anxiety. These behaviors were associated with 25% of the diet-affected genes, suggesting an important behavioral route through which diet can impact immune function.


2016 ◽  
Vol 22 (6) ◽  
pp. 579-592 ◽  
Author(s):  
Xiaomin Dong ◽  
Yanan You ◽  
Jia Qian Wu

The composition and function of the central nervous system (CNS) is extremely complex. In addition to hundreds of subtypes of neurons, other cell types, including glia (astrocytes, oligodendrocytes, and microglia) and vascular cells (endothelial cells and pericytes) also play important roles in CNS function. Such heterogeneity makes the study of gene transcription in CNS challenging. Transcriptomic studies, namely the analyses of the expression levels and structures of all genes, are essential for interpreting the functional elements and understanding the molecular constituents of the CNS. Microarray has been a predominant method for large-scale gene expression profiling in the past. However, RNA-sequencing (RNA-Seq) technology developed in recent years has many advantages over microarrays, and has enabled building more quantitative, accurate, and comprehensive transcriptomes of the CNS and other systems. The discovery of novel genes, diverse alternative splicing events, and noncoding RNAs has remarkably expanded the complexity of gene expression profiles and will help us to understand intricate neural circuits. Here, we discuss the procedures and advantages of RNA-Seq technology in mammalian CNS transcriptome construction, and review the approaches of sample collection as well as recent progress in building RNA-Seq-based transcriptomes from tissue samples and specific cell types.


Sign in / Sign up

Export Citation Format

Share Document