Individual performance of multi-GNSS signals in the determination of STEC over Thailand with the applicability of Klobuchar model

Author(s):  
Hong-Woo Seok ◽  
Kutubuddin Ansari ◽  
Chaiwat Panachai ◽  
Punyawi Jamjareegulgarn
Author(s):  
Nooshin Atashfeshan ◽  
Hamideh Razavi

Objective Analysis of the effect of mental fatigue on a cognitive task and determination of the right start time for rest breaks in work environments. Background Mental fatigue has been recognized as one of the most important factors influencing individual performance. Subjective and physiological measures are popular methods for analyzing fatigue, but they are restricted to physical experiments. Computational cognitive models are useful for predicting operator performance and can be used for analyzing fatigue in the design phase, particularly in industrial operations and inspections where cognitive tasks are frequent and the effects of mental fatigue are crucial. Method A cyclic mental task is modeled by the ACT-R architecture, and the effect of mental fatigue on response time and error rate is studied. The task includes visual inspections in a production line or control workstation where an operator has to check products’ conformity to specifications. Initially, simulated and experimental results are compared using correlation coefficients and paired t test statistics. After validation of the model, the effects are studied by human and simulated results, which are obtained by running 50-minute tests. Results It is revealed that during the last 20 minutes of the tests, the response time increased by 20%, and during the last 12.5 minutes, the error rate increased by 7% on average. Conclusion The proper start time for the rest period can be identified by setting a limit on the error rate or response time. Application The proposed model can be applied early in production planning to decrease the negative effects of mental fatigue by predicting the operator performance. It can also be used for determining the rest breaks in the design phase without an operator in the loop.


Author(s):  
Janusz Cwiklak ◽  
Marek Grzegorzewski ◽  
Kamil Krasuski

The article presents and describes research results concerning determination of an impact of the ionospheric correction upon the positioning accuracy of an aircraft. The main objective of examinations was to verify three ionospheric models (the Klobuchar model, SBAS model and IONEX model) in determining aircraft coordinates. In the framework of the conducted simulations, the authors determined the aircraft coordinates by means of the SPP code method in the GPS system. The article presents a comparison of the determined aircraft coordinates in the SPP code method in relation to an accurate solution in the RTK-OTF differential technique. Based on the obtained results, it was found that e use of the SBAS and IONEX model is exploited to improve the positioning accuracy of an aircraft in relation to the Klobuchar model, from 20% to 72%, in the geocentric XYZ frame. The obtained findings of a simulation indicate that the ionospheric correction in the SBAS and IONEX models may be used to improve the performance of aircraft coordinates in air navigation.


Author(s):  
Gordana Savić ◽  
Milan Martić

Composite indicators (CIs) are seen as an aggregation of a set of sub-indicators for measuring multi-dimensional concepts that cannot be captured by a single indicator (OECD, 2008). The indicators of development in different areas are also constructed by aggregating several sub-indicators. Consequently, the construction of CIs includes weighting and aggregation of individual performance indicators. These steps in CI construction are challenging issues as the final results are significantly affected by the method used in aggregation. The main question is whether and how to weigh individual performance indicators. Verifiable information regarding the true weights is typically unavailable. In practice, subjective expert opinions are usually used to derive weights, which can lead to disagreements (Hatefi & Torabi, 2010). The disagreement can appear when the experts from different areas are included in a poll since they can value criteria differently in accordance with their expertise. Therefore, a proper methodology of the derivation of weights and construction of composite indicators should be employed. From the operations research standpoint, the data envelopment analysis (DEA) and the multiple criteria decision analysis (MCDA) are proper methods for the construction of composite indicators (Zhou & Ang, 2009; Zhou, Ang, & Zhou, 2010). All methods combine the sub-indicators according to their weights, except that the MCDA methods usually require a priori determination of weights, while the DEA determines the weights a posteriori, as a result of model solving. This chapter addresses the DEA as a non-parametric technique, introduced by Charnes, Cooper, and Rhodes (1978), for efficiency measurement of different non-profitable and profitable units. It is lately adopted as an appropriate method for the CI construction due to its several features (Shen, Ruan, Hermans, Brijs, Wets, & Vanhoof, 2011). Firstly, individual performance indicators are combined without a priori determination of weights, and secondly, each unit under observation is assessed taking into consideration the performance of all other units, which is known as the ‘benefit of the doubt' (BOD) approach (Cherchye, Moesen, Rogge, & van Puyenbroeck, 2007). The methodological and theoretical aspects and the flaws of the DEA application for the construction of CIs will be discussed in this chapter, starting with the issues related to the application procedure, followed by the issues of real data availability, introducing value judgments, qualitative data, and non-desirable performance indicators. The procedure of a DEA-based CI construction will be illustrated by the case of ranking of different regions of Serbia based on their socio-economic development.


1966 ◽  
Vol 25 ◽  
pp. 93-97
Author(s):  
Richard Woolley

It is now possible to determine proper motions of high-velocity objects in such a way as to obtain with some accuracy the velocity vector relevant to the Sun. If a potential field of the Galaxy is assumed, one can compute an actual orbit. A determination of the velocity of the globular clusterωCentauri has recently been completed at Greenwich, and it is found that the orbit is strongly retrograde in the Galaxy. Similar calculations may be made, though with less certainty, in the case of RR Lyrae variable stars.


1999 ◽  
Vol 190 ◽  
pp. 549-554
Author(s):  
Nino Panagia

Using the new reductions of the IUE light curves by Sonneborn et al. (1997) and an extensive set of HST images of SN 1987A we have repeated and improved Panagia et al. (1991) analysis to obtain a better determination of the distance to the supernova. In this way we have derived an absolute size of the ringRabs= (6.23 ± 0.08) x 1017cm and an angular sizeR″ = 808 ± 17 mas, which give a distance to the supernovad(SN1987A) = 51.4 ± 1.2 kpc and a distance modulusm–M(SN1987A) = 18.55 ± 0.05. Allowing for a displacement of SN 1987A position relative to the LMC center, the distance to the barycenter of the Large Magellanic Cloud is also estimated to bed(LMC) = 52.0±1.3 kpc, which corresponds to a distance modulus ofm–M(LMC) = 18.58±0.05.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1972 ◽  
Vol 1 ◽  
pp. 27-38
Author(s):  
J. Hers

In South Africa the modern outlook towards time may be said to have started in 1948. Both the two major observatories, The Royal Observatory in Cape Town and the Union Observatory (now known as the Republic Observatory) in Johannesburg had, of course, been involved in the astronomical determination of time almost from their inception, and the Johannesburg Observatory has been responsible for the official time of South Africa since 1908. However the pendulum clocks then in use could not be relied on to provide an accuracy better than about 1/10 second, which was of the same order as that of the astronomical observations. It is doubtful if much use was made of even this limited accuracy outside the two observatories, and although there may – occasionally have been a demand for more accurate time, it was certainly not voiced.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


1975 ◽  
Vol 26 ◽  
pp. 341-380 ◽  
Author(s):  
R. J. Anderle ◽  
M. C. Tanenbaum

AbstractObservations of artificial earth satellites provide a means of establishing an.origin, orientation, scale and control points for a coordinate system. Neither existing data nor future data are likely to provide significant information on the .001 angle between the axis of angular momentum and axis of rotation. Existing data have provided data to about .01 accuracy on the pole position and to possibly a meter on the origin of the system and for control points. The longitude origin is essentially arbitrary. While these accuracies permit acquisition of useful data on tides and polar motion through dynamio analyses, they are inadequate for determination of crustal motion or significant improvement in polar motion. The limitations arise from gravity, drag and radiation forces on the satellites as well as from instrument errors. Improvements in laser equipment and the launch of the dense LAGEOS satellite in an orbit high enough to suppress significant gravity and drag errors will permit determination of crustal motion and more accurate, higher frequency, polar motion. However, the reference frame for the results is likely to be an average reference frame defined by the observing stations, resulting in significant corrections to be determined for effects of changes in station configuration and data losses.


1979 ◽  
Vol 44 ◽  
pp. 349-355
Author(s):  
R.W. Milkey

The focus of discussion in Working Group 3 was on the Thermodynamic Properties as determined spectroscopically, including the observational techniques and the theoretical modeling of physical processes responsible for the emission spectrum. Recent advances in observational techniques and theoretical concepts make this discussion particularly timely. It is wise to remember that the determination of thermodynamic parameters is not an end in itself and that these are interesting chiefly for what they can tell us about the energetics and mass transport in prominences.


Sign in / Sign up

Export Citation Format

Share Document