Neighboring optimal control for fixed-time multi-burn orbital transfers

2017 ◽  
Vol 61 ◽  
pp. 57-65 ◽  
Author(s):  
Zheng Chen
2000 ◽  
Vol 123 (1) ◽  
pp. 54-61 ◽  
Author(s):  
Nader Jalili ◽  
Ebrahim Esmailzadeh

A new approach to optimal control of vehicle suspension systems, incorporating actuator time delay, is presented. The inclusion of time delay provides a more realistic model for the actuators, and the problem is viewed from a different perspective rather than the conventional optimal control techniques. The objective here is to select a set of feedback gains such that the maximum vertical acceleration of the sprung mass is minimized, over a wide band frequency range and when subjected to certain constraints. The constraints are dictated by the vehicle stability characteristics and the physical bounds placed on the feedback gains. Utilizing a Simple Quarter Car model, the constrained optimization is then carried out in the frequency domain with the road irregularities described as random processes. Due to the presence of the actuator time delay, the characteristic equation is found to be transcendental rather than algebraic, which makes the stability analysis relatively complex. A new scheme for the stability chart strategy with fixed time delay is introduced in order to address the stability issue. The stability characteristics are also verified utilizing other conventional methods such as the Michailov technique. Results demonstrate that the suspension system, when considering the effect of the actuator time delay, exhibits a completely different behavior.


2012 ◽  
Vol 29 (06) ◽  
pp. 1250033
Author(s):  
VIRTUE U. EKHOSUEHI ◽  
AUGUSTINE A. OSAGIEDE

In this study, we have applied optimal control theory to determine the optimum value of tax revenues accruing to a state given the range of budgeted expenditure on enforcing tax laws and awareness creation on the payment of the correct tax. This is achieved by maximizing the state's net tax revenue over a fixed time interval subject to certain constraints. By assuming that the satisfaction derived by the Federal Government of Nigeria on the ability of the individual states to generate tax revenue which is as near as the optimum tax revenue (via the state's control problem) is described by the logarithmic form of the Cobb–Douglas utility function, a formula for horizontal revenue allocation in Nigeria in its raw form is derived. Afterwards, we illustrate the use of the proposed horizontal revenue allocation formula using hypothetical data.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Fernando Saldaña ◽  
Andrei Korobeinikov ◽  
Ignacio Barradas

We investigate the optimal vaccination and screening strategies to minimize human papillomavirus (HPV) associated morbidity and the interventions cost. We propose a two-sex compartmental model of HPV-infection with time-dependent controls (vaccination of adolescents, adults, and screening) which can act simultaneously. We formulate optimal control problems complementing our model with two different objective functionals. The first functional corresponds to the protection of the vulnerable group and the control problem consists of minimizing the cumulative level of infected females over a fixed time interval. The second functional aims to eliminate the infection, and, thus, the control problem consists of minimizing the total prevalence at the end of the time interval. We prove the existence of solutions for the control problems, characterize the optimal controls, and carry out numerical simulations using various initial conditions. The results and properties and drawbacks of the model are discussed.


2011 ◽  
Vol 54 (3) ◽  
pp. 653-663 ◽  
Author(s):  
ChengGang Liu ◽  
Christopher G. Atkeson ◽  
JianBo Su

Author(s):  
Anatolii Fedorovich Kleimenov

The equations of motion of the controlled system in the two-step problem under consideration at a fixed time interval contain the controls of either one player or two players. In the first step (stage) of the controlled process (from the initial moment to a certain predetermined moment), only the first player controls the system, which solves the problem of optimal control with a given terminal functional. In the second step (stage) of the process, the first player decides whether the second player will participate in the control process for the remainder of the time, or not. It is assumed that for participation the second player must pay the first side payment in a fixed amount. If «yes», then a non-antagonistic positional differential game is played out, in which the Nash equilibrium is taken as the solution. In addition, players can use «abnormal» behaviors, which can allow players to increase their winnings. If « no », then until the end of the process continues to solve the problem optimal control.


Sign in / Sign up

Export Citation Format

Share Document