Adequate glycemic control prevents cholesterol efflux impairment and lipid accumulation in macrophages induced by advanced glycated albumin

2018 ◽  
Vol 275 ◽  
pp. e171
Author(s):  
A. Machado-lima ◽  
R. Tallada Iborra ◽  
L. Shimabukuro Okuda ◽  
R Souza Pinto ◽  
E. Regina Nakandakare ◽  
...  
2008 ◽  
Vol 33 (5) ◽  
pp. 473-479 ◽  
Author(s):  
T. Sako ◽  
A. Mori ◽  
P. Lee ◽  
T. Sato ◽  
H. Mizutani ◽  
...  

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Dina A Schneider ◽  
Longhou Fang ◽  
Yury I Miller

Our laboratory recently demonstrated that Apolipoprotein A-I Binding Protein (AIBP), an evolutionarily conserved intracellular and secreted protein, mediates cholesterol efflux from endothelial cells, which in turn disrupts lipid rafts and limits angiogenic signaling. Since lipid rafts are implicated in multiple cell signal cascades, to better understand the in vivo role of AIBP our laboratory has generated Apoa1bp -/- mice. The Apoa1bp -/- mice exhibit increased levels of inflammatory cytokines, and have an increased content of M1 macrophages in white adipose tissue in comparison to wild type mice when challenged with a high fat diet. Since AIBP accelerates cholesterol efflux from macrophages to HDL, and vascular lipid accumulation and inflammation are key factors in atherosclerosis, we hypothesized that AIBP is atheroprotective by suppressing macrophage lipid accumulation and inflammatory M1 macrophage polarization. Immunohistochemistry shows that AIBP is present in atherosclerotic lesion macrophages. However, elicited macrophages lacking AIBP expression do not exhibit any impairment in their ability to polarize to M1, suggesting that deficiency in secreted extracellular AIBP may be responsible for the M1 phenotype observed in Apoa1bp -/- mice. Indeed, treating macrophages with recombinant AIBP prior to polarization resulted in suppression of M1 polarization. In a high-cholesterol diet feeding experiment, Apoa1bp -/- Ldlr -/- mice had increased M1 macrophage content in their aorta and aortic root atherosclerotic lesions, as determined by FACS and immunohistochemistry, respectively. In conclusion, AIBP is an important negative regulator of macrophage polarization and lipid accumulation. A better understanding of AIBP’s regulatory functions in the context of atherosclerosis will provide new mechanistic insights and targeted therapies.


2019 ◽  
Vol 105 (3) ◽  
pp. 677-687 ◽  
Author(s):  
Cyrus V Desouza ◽  
Richard G Holcomb ◽  
Julio Rosenstock ◽  
Juan P Frias ◽  
Stanley H Hsia ◽  
...  

Abstract Context Intermediate-term glycemic control metrics fulfill a need for measures beyond hemoglobin A1C. Objective Compare glycated albumin (GA), a 14-day blood glucose measure, with other glycemic indices. Design 24-week prospective study of assay performance. Setting 8 US clinics. Participants Subjects with type 1 (n = 73) and type 2 diabetes (n = 77) undergoing changes to improve glycemic control (n = 98) or with stable diabetes therapy (n = 52). Interventions GA, fructosamine, and A1C measured at prespecified intervals. Mean blood glucose (MBG) calculated using weekly self-monitored blood glucose profiles. Main Outcome Measures Primary: Pearson correlation between GA and fructosamine. Secondary: magnitude (Spearman correlation) and direction (Kendall correlation) of change of glycemic indices in the first 3 months after a change in diabetes management. Results GA was more concordant (60.8%) with changes in MBG than fructosamine (55.5%) or A1C (45.5%). Across all subjects and visits, the GA Pearson correlation with fructosamine was 0.920. Pearson correlations with A1C were 0.655 for GA and 0.515 for fructosamine (P < .001) and with MBG were 0.590 and 0.454, respectively (P < .001). At the individual subject level, Pearson correlations with both A1C and MBG were higher for GA than for fructosamine in 56% of subjects; only 4% of subjects had higher fructosamine correlations with A1C and MBG. GA had a higher Pearson correlation with A1C and MBG in 82% and 70% of subjects, respectively. Conclusions Compared with fructosamine, GA correlates significantly better with both short-term MBG and long-term A1C and may be more useful than fructosamine in clinical situations requiring monitoring of intermediate-term glycemic control (NCT02489773).


2016 ◽  
Vol 7 (7) ◽  
pp. 3201-3210 ◽  
Author(s):  
Shengjuan Zhao ◽  
Jianke Li ◽  
Lifang Wang ◽  
Xiaoxia Wu

Pomegranate peel polyphenols hindered ox-LDL-induced raw264.7 foam cell formation, by decreasing CD36 and promoting ABCA1 and LXRα expression.


2020 ◽  
Vol 11 (12) ◽  
Author(s):  
Xiao-Hua Yu ◽  
Wen-Yi Deng ◽  
Jiao-Jiao Chen ◽  
Xiao-Dan Xu ◽  
Xian-Xia Liu ◽  
...  

AbstractKcnq1 overlapping transcript 1 (kcnq1ot1), an imprinted antisense lncRNA in the kcnq1 locus, acts as a potential contributor to cardiovascular disease, but its role in atherosclerosis remains unknown. The aim of this study was to explore the effects of kcnq1ot1 on atherogenesis and the underlying mechanism. Our results showed that kcnq1ot1 expression was significantly increased in mouse aorta with atherosclerosis and lipid-loaded macrophages. Lentivirus-mediated kcnq1ot1 overexpression markedly increased atherosclerotic plaque area and decreased plasma HDL-C levels and RCT efficiency in apoE−/− mice fed a Western diet. Upregulation of kcnq1ot1 also reduced the expression of miR-452-3p and ABCA1 but increased HDAC3 levels in mouse aorta and THP-1 macrophages. Accordingly, kcnq1ot1 overexpression inhibited cholesterol efflux and promoted lipid accumulation in THP-1 macrophages. In contrast, kcnq1ot1 knockdown protected against atherosclerosis in apoE−/− mice and suppressed lipid accumulation in THP-1 macrophages. Mechanistically, kcnq1ot1 enhanced HDAC3 expression by competitively binding to miR-452-3p, thereby inhibiting ABCA1 expression and subsequent cholesterol efflux. Taken together, these findings suggest that kcnq1ot1 promotes macrophage lipid accumulation and accelerates the development of atherosclerosis through the miR-452-3p/HDAC3/ABCA1 pathway.


2017 ◽  
Vol 47 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Maria Divani ◽  
Panagiotis I. Georgianos ◽  
Triantafyllos Didangelos ◽  
Fotios Iliadis ◽  
Areti Makedou ◽  
...  

Background: Glycated hemoglobin A1c (HbA1c) among diabetic hemodialysis patients continues to be the standard of care, although its limitations are well recognized. This study evaluated glycated albumin (GA) and glycated serum protein (GSP) as alternatives to HbA1c in detecting glycemic control among diabetic hemodialysis patients using continuous-glucose-monitoring (CGM)-derived glucose as reference standard. Methods: A CGM system (iPRO) was applied for 7 days in 37 diabetic hemodialysis patients to determine glycemic control. The accuracy of GA and GSP versus HbA1c in detecting a 7-day average glucose ≥184 mg/dL was evaluated via receiver-operating-characteristic (ROC) analysis. Results: CGM-derived glucose exhibited strong correlation (r = 0.970, p < 0.001) and acceptable agreement with corresponding capillary glucose measurements obtained by the patients themselves in 1,169 time-points over the 7-day-long CGM. The area under ROC curve (AUC) for GA, GSP, and HbA1c to detect poor glycemic control was 0.976 (0.862–1.000), 0.682 (0.502–0.862), and 0.776 (0.629–0.923) respectively. GA levels >20.3% had 90.9% sensitivity and 96.1% specificity in detecting a 7-day average glucose ≥184 mg/dL. The AUC for GA was significantly higher than the AUC for GSP (difference between areas: 0.294, p < 0.001) and the AUC for HbA1c (difference between areas: 0.199, p < 0.01). Conclusion: Among diabetic hemodialysis patients, GA is a stronger indicator of poor glycemic control assessed with 7-day-long CGM when compared to GSP and HbA1c.


Sign in / Sign up

Export Citation Format

Share Document