Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

2016 ◽  
Vol 142 ◽  
pp. 303-312 ◽  
Author(s):  
Yifeng Xue ◽  
Zhen Zhou ◽  
Teng Nie ◽  
Kun Wang ◽  
Lei Nie ◽  
...  
2018 ◽  
Vol 18 (14) ◽  
pp. 10675-10691 ◽  
Author(s):  
Xia Li ◽  
Jiarui Wu ◽  
Miriam Elser ◽  
Tian Feng ◽  
Junji Cao ◽  
...  

Abstract. In the present study, the WRF-Chem model is used to assess contributions of residential coal combustion (RCC) emissions to the air quality in Beijing–Tianjin–Hebei (BTH) during a persistent air pollution episode from 9 to 25 January 2014. In general, the predicted temporal variations and spatial distributions of the mass concentrations of air pollutants are in good agreement with observations at monitoring sites in BTH. The WRF-Chem model also reasonably reproduces the temporal variations in aerosol species when compared with the aerosol mass spectrometer measurements in Beijing. The RCC emissions play an important role in the haze formation in BTH, contributing about 23.1 % of PM2.5 (fine particulate matter) and 42.6 % of SO2 during the simulation period on average. Organic aerosols dominate the PM2.5 from the RCC emissions in BTH, with a contribution of 42.8 %, followed by sulfate (17.1 %). The air quality in Beijing is remarkably improved when the RCC emissions in BTH and the surrounding areas are excluded in model simulations, with a 30 % decrease in PM2.5 mass concentrations. However, if only the RCC emissions in Beijing are excluded, the local PM2.5 mass concentration is decreased by 18.0 % on average. Our results suggest that the implementation of the residential coal replacement by clean energy sources in Beijing is beneficial to the local air quality. Should residential coal replacement be carried out in BTH and its surrounding areas, the air quality in Beijing would be improved remarkably. Further studies would need to consider uncertainties in the emission inventory and meteorological fields.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1338
Author(s):  
Muhammad Aamir ◽  
Zeyun Li ◽  
Sibghatullah Bazai ◽  
Raja Asif Wagan ◽  
Uzair Aslam Bhatti ◽  
...  

Mitigation measures and control strategies relating to the novel coronavirus disease 2019 (COVID-19) have been widely applied in many countries to reduce the transmission of this pandemic disease. China was the first country to implement a strong lockdown policy to control COVID-19 when countries worldwide were struggling to manage COVID-19 cases. However, lockdown causes numerous changes to air-quality patterns due to the low amount of traffic and the decreased human mobility it results in. To study the impact of the strict control measures of the new COVID-19 epidemic on the air quality of Hubei in early 2020, the air-quality monitoring data of Hubei’s four cities, namely Huangshi, Yichang, Jingzhou, and Wuhan, from 2019 to 2021, specifically 1 January to 30 August, was examined to analyze the characteristics of the temporal and spatial distribution. All air-quality pollutants decreased during the active-COVID-19 period, with a maximum decrease of 26% observed in PM10, followed by 23% of PM2.5, and a minimum decrease of 5% observed in O3. Changes in air pollutants from 2017 to 2021 were also compared, and a decrease in all pollutants through to 2020 was found. The air-quality index (AQI) recorded an increase of 2% post-COVID-19, which shows that air quality will worsen in future, but it decreased by 22% during the active-COVID-19 period. A path analysis model was developed to further understand the relationship between the AQI and air-quality patterns. This path analysis shows a strong correlation between the AQI and PM10 and PM2.5, however its correlation with other air pollutants is weak. Regression analysis shows a similar pattern of there being a strong relationship between AQI and PM10 (r2 = 0.97) and PM2.5 (r2 = 0.93). Although the COVID-19 pandemic had numerous negative effects on human health and the global economy, it is likely that the reduction in air pollution and the significant improvement in ambient air quality due to lockdowns provided substantial short-term health benefits. The government must implement policies to control the environmental issues which are causing poor air quality in post-COVID-19.


2018 ◽  
Author(s):  
Xia Li ◽  
Jiarui Wu ◽  
Miriam Elser ◽  
Junji Cao ◽  
Tian Feng ◽  
...  

Abstract. In the present study, the WRF-CHEM model is used to evaluate contributions of the residential coal combustion (RCC) emission to the air quality in Beijing-Tianjin-Hebei (BTH) during persistent air pollution episodes from 9 to 25 January 2014. In general, the predicted temporal variations and spatial distributions of the air pollutants mass concentrations are in good agreement with observations at monitoring sites in BTH. The WRF-CHEM model also reasonably well reproduces the temporal variations of aerosol species compared with the AMS measurements in Beijing. The RCC emission plays an important role in the haze formation in BTH, contributing about 23.1 % of PM2.5 (fine particulate matter) and 42.6 % of SO2 during the simulation period on average. Organic aerosols dominate PM2.5 from the RCC emission, with a contribution of 42.8 %, followed by sulfate (17.1 %). The air quality in Beijing is remarkably improved when the RCC emission in BTH and its surrounding areas is excluded in simulations, with a 30 % decrease of PM2.5 concentrations. However, when only the RCC emission in Beijing is excluded, the Beijing's PM2.5 level is decreased by 18.0 % on average. Our results suggest that implementation of the residential coal replacement by clean energy sources in Beijing is beneficial to the Beijing's air quality, but is not expected to bring back the blue sky to Beijing. Should the residential coal replacement be carried out in BTH and its surrounding areas, the air quality in Beijing would be improved remarkably. Further studies need be conducted considering the uncertainties in the emission inventory and meteorological fields.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 189 ◽  
Author(s):  
Yifeng Xue ◽  
Shihao Zhang ◽  
Teng Nie ◽  
Xizi Cao ◽  
Aijun Shi

The Beijing government initiated the Clean Air Action Plan (CAAP) in 2013. Through a series of actions to control air pollution, the emissions of major atmospheric pollutants are reduced to improve urban air quality. In order to evaluate the effectiveness of control measures taken to mitigate atmospheric pollution, we investigated and analyzed the implementation of the CAAP in Beijing from 2013 to 2017, estimating the corresponding reduction in emissions of major air pollutants. The contribution of different control measures to the improvement of air quality was quantified and the experiences of managing air pollution were summarized, which provided references for the continuous improvement of air quality in Beijing and the surrounding areas. The results showed that the emission of SO2, NOX, PM10, PM2.5, and VOCs from air pollution source have been decreased by 119,924, 116,091, 116,810, 46,652, and 97,267 tons after the implementation of the CAAP. The sum of these five air pollutants emissions have been reduced by 39% in 2017 compared with 2013, the largest decrease in SO2 emissions was 87%, which was related to the vigorous control on coal-fired combustion. The control measure with the greatest contribution to decreasing the ambient PM2.5 concentration was the clean energy transformation of coal-fired power plants, which contributed 27% of the total reduced concentration and 6.1 μg/m3 of the average PM2.5 concentration reduction in Beijing. Clean Residential coal use also significantly decreased the PM2.5 concentration by 5.4 μg/m3, which was 23% of the total reduction. In addition, the industrial restructuring and the management of automotive vehicle use and dust could also contribute to efficiently reducing the PM2.5 concentration by 4.0, 3.2, and 2.3 μg/m3, or 17%, 14%, and 10% of the total reduction, respectively. Due to the implementation of control measures of Clean Air Action Plan, the energy and industrial structure of Beijing have been adjusted and optimized, leading to the reduction of pollutant emissions, which is the secret of urban long-term air quality improvement.


2013 ◽  
Vol 13 (10) ◽  
pp. 25939-25967 ◽  
Author(s):  
C.-C. Chang ◽  
M. Shao ◽  
C. C. K. Chou ◽  
S.-C. Liu ◽  
J.-L. Wang ◽  
...  

Abstract. As the host of the 2008 Summer Olympic Games, Beijing implemented a series of stringent, short-term air quality control measures to reduce the emissions of anthropogenic air pollutants. Large reductions in the daily average concentrations of primary pollutants, e.g., non-methane hydrocarbons (NMHCs) and nitrogen oxides (NOx) of approximately 50% were observed at the air quality observatory of Peking University. Nevertheless, high levels of ozone were present during the control period. Although anthropogenic precursors were greatly reduced, the meteorological conditions in summer, including high temperature and light flux, are conducive to the production of large amounts of biogenic isoprene, which is extremely reactive. The diurnal pattern of isoprene showed daily maximum mixing ratios of 0.83 ppbv at noon and a minimum at night, reflecting its primarily biogenic properties. Using the ratio of isoprene to vehicle exhaust tracers, approximately 92% of the daytime isoprene was estimated from biogenic sources, and only 8% was attributed to vehicular emissions. In terms of OH reactivity and the ozone formation potential (OFP), biogenic isoprene with its midday surge can contribute approximately 20% of the total OFPs and 40–50% of the total OH reactivities of the 65 measured NMHCs during the midday hours. The discrepancy between decreased precursor levels and the observed high ozone was most likely caused by a combination of many factors. The changes in the partition among the components of oxidation products (O3, NO2 and NOz) and the contribution of air pollutants from regional sources outside Beijing should be two primary reasons. Furthermore, the influences of biogenic isoprene as well as the non-linearity of O3-VOC-NOx chemistry are other major concerns that can reduce the effectiveness of the control measures for decreasing ozone formation. Although anthropogenic precursors were greatly reduced during the Olympic Games, sufficient biogenic isoprene and moderate NOx were still present in the conditions of high radiation flux and temperature during midday and early afternoon, which can still contribute a significant fraction of midday and early afternoon O3.


2016 ◽  
Vol 27 (4) ◽  
pp. 452-465 ◽  
Author(s):  
Bin Xu ◽  
Xiaokai Chen ◽  
Jianyin Xiong

Among many environments, the motor vehicle cabin microenvironment has been of particular public concern. Although commuters typically spend only 5.5% of their time in vehicles, the emissions from various interior components of motor vehicles as well as emissions from exhaust fumes carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure due to their high concentrations inside vehicles' cabins. This review summarizes significant findings in the literature on air quality inside vehicle cabins, including chemical species, related sources, measurement methodologies and control measures. More than 90 relevant studies performed across over 10 countries were carefully reviewed. These comprised more than 2000 individual road trips, where concentrations of numerous air pollutants were determined. Ultrafine particles, aromatic hydrocarbons, carbonyls, semi-volatile organic compounds and microbes have been identified as the primary air pollutants inside vehicle cabins. Air recirculation with high-efficiency air filter has been reported as the most effective measure to lower air pollutant concentrations. Future work should focus on investigating the health risks of exposure to various air pollutants inside different vehicles and further developing advanced air filter to improve the in-cabin air quality.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 743
Author(s):  
Ahmad Hasnain ◽  
Muhammad Zaffar Hashmi ◽  
Uzair Aslam Bhatti ◽  
Basit Nadeem ◽  
Geng Wei ◽  
...  

A unique illness, the coronavirus disease 2019 (COVID-19), emerged in Wuhan, People’s Republic of China, in December 2019. To reduce the spread of the virus, strict lockdown policies and control measures were put in place all over the world. Due to these enforced limitations, a drastic drop in air pollution and an improvement in air quality were observed. The present study used six air pollutants (PM10, PM2.5, SO2, NO2, CO and O3) to observe trends before, during and after the COVID-19 lockdown period in Nanjing, China. The data were divided into six phases: P1–P3, pre-lockdown (1 October–31 December 2019), lockdown (1 January–31 March 2020), after lockdown (1 April–30 June 2020), P4–P6: the same dates as the lockdown but during 2017, 2018 and 2019. The results indicate that compared with the pre-lockdown phase, the PM10 and PM2.5 average concentrations decreased by –27.71% and –5.09%. Compared with the previous three years, 2017–2019, the reductions in PM10 and PM2.5 were –37.99% and –33.56%, respectively. Among other pollutants, concentrations of SO2 (–32.90%), NO2 (–34.66%) and CO (–16.85%) also decreased during the lockdown, while the concentration of O3 increased by approximately 25.45%. Moreover, compared with the pre- and during lockdown phases, PM10, PM2.5 and NO2 showed decreasing trends while SO2, CO and O3 concentrations increased. These findings present a road map for upcoming studies and provide a new path for policymakers to create policies to improve air quality.


2022 ◽  
Author(s):  
Xiaohui Lin ◽  
Ruqi Yang ◽  
Wen Zhang ◽  
Ning Zeng ◽  
Yu Zhao ◽  
...  

Abstract Background: Air pollution in China has raised great concerns due to its adverse effects on air quality, human health, and climate. Emissions of air pollutants (APs) are inherently linked with CO2 emissions through fossil-energy consumption. Knowledge of the characteristics of APs and CO2 emissions and their relationships is fundamentally important in the pursuit of co-benefits in addressing air quality and climate issues in China. However, the linkages and interactions between APs and CO2 in China are not well understood.Results: Here, we conducted an ensemble study of six bottom-up inventories to identify the underlying drivers of APs and CO2 emissions growth and to explore their linkages in China. The results showed that, during 1980-2015, the power and industry sectors contributed 61–79% to China’s overall emissions of CO2, NOx, and SO2. In addition, the residential and industrial sectors were large emitters (77–85%) of PM10, PM2.5, CO, BC, and OC. The emissions of CH4, N2O and NH3 were dominated by the agriculture sector (46–82%), while the share of CH4 emissions in the energy sector increased since 2010. During 1980-2015, APs and greenhouse gases (GHGs) emissions from residential sources generally decreased over time, while the transportation sector increased its impact on recent emissions, particularly for NOx and NMVOC. Since implementation of stringent pollution control measures and accompanying technological improvements in 2013, China has effectively limited pollution emissions (e.g., growth rates of –10% per year for PM and –20% for SO2) and slowed down the increasing trend of carbon emissions from the power and industrial sectors. We also found that areas with high emissions of CO, NOx, NMVOC, and SO2 also emitted large amounts of CO2, which demonstrates the possible common sources of APs and GHGs. Moreover, we found significant correlations between CO2 and APs (e.g., NOx, CO, SO2, and PM) emissions in the top 5% high-emitting grid cells, with more than 60% common/overlapped grid cells during 2010–2015. Conclusions: We found significant homology in spatial and temporal aspects for CO2, and NOx, CO, SO2, and PM emissions in China. We targeted sectorial and spatial APs and GHGs emission hot-spots, which help for management and policy-making of collaborative reductions of them. This comprehensive analysis over 6 datasets improves our understanding of APs and GHGs emissions in China during the period of rapid industrialization from 1980 to 2015. This study helps elucidate the linkages between APs and CO2 from an integrated perspective, and provides insights for future synergistic emissions reduction.


2021 ◽  
Vol 8 (1) ◽  
pp. 1947007
Author(s):  
Ebenezer Leke Odekanle ◽  
Chinchong Blessing Bakut ◽  
Abiodun Paul Olalekan ◽  
Roseline Oluwaseun Ogundokun ◽  
Charity O. Aremu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document