scholarly journals Future precipitation changes in Egypt under the 1.5 °C and 2.0 °C global warming goals using CMIP6 multimodel ensemble

2021 ◽  
pp. 105908
Author(s):  
Mohamed Salem Nashwan ◽  
Shamsuddin Shahid
2013 ◽  
Vol 26 (22) ◽  
pp. 8781-8786 ◽  
Author(s):  
Larissa Back ◽  
Karen Russ ◽  
Zhengyu Liu ◽  
Kuniaki Inoue ◽  
Jiaxu Zhang ◽  
...  

Abstract This study analyzes the response of global water vapor to global warming in a series of fully coupled climate model simulations. The authors find that a roughly 7% K−1 rate of increase of water vapor with global surface temperature is robust only for rapid anthropogenic-like climate change. For slower warming that occurred naturally in the past, the Southern Ocean has time to equilibrate, producing a different pattern of surface warming, so that water vapor increases at only 4.2% K−1. This lower rate of increase of water vapor with warming is not due to relative humidity changes or differences in mean lower-tropospheric temperature. A temperature of over 80°C would be required in the Clausius–Clapeyron relationship to match the 4.2% K−1 rate of increase. Instead, the low rate of increase is due to spatially heterogeneous warming. During slower global warming, there is enhanced warming at southern high latitudes, and hence less warming in the tropics per kelvin of global surface temperature increase. This leads to a smaller global water vapor increase, because most of the atmospheric water vapor is in the tropics. A formula is proposed that applies to general warming scenarios. This study also examines the response of global-mean precipitation and the meridional profile of precipitation minus evaporation and compares the latter to thermodynamic scalings. It is found that global-mean precipitation changes are remarkably robust between rapid and slow warming. Thermodynamic scalings for the rapid- and slow-warming zonal-mean precipitation are similar, but the precipitation changes are significantly different, suggesting that circulation changes are important in driving these differences.


2011 ◽  
Vol 91 (2) ◽  
pp. 51-70
Author(s):  
Vladan Ducic ◽  
Dragan Buric ◽  
Jelena Lukovic ◽  
Gorica Stanojevic

The global warming and climate change are the actual and challenging topics. Recently there is one question, frequently asked: whether today's climate is changing? The studies of this issues are mainly related to the two the most important climatic elements - air temperature and precipitation amounts. We have done research about temperature variability for Montenegro and the main aim of this paper is analysis precipitation changes for station Podgorica (Montenegro) in the period of sistematic observation - are there changes, to what extent and whether they are significant. According to the results, acumulated precipitation do not show significant changes for annual and seasonal values in the period 1951-2010. The interannual variations of the precipitation (which are characterictic for this climate element) do not show increases in recent times. The component trend shows some changes, but statisticaly insignigficant. The previous results for precipitation conditions in Podgorica are not in accordance with the concept of Intergovermental Panel on Climate Change (IPCC) which predicted a general decerease in precipitation and increase variability on this area.


2018 ◽  
Vol 31 (4) ◽  
pp. 1413-1433 ◽  
Author(s):  
Alexander Todd ◽  
Matthew Collins ◽  
F. Hugo Lambert ◽  
Robin Chadwick

Large uncertainty remains in future projections of tropical precipitation change under global warming. A simplified method for diagnosing tropical precipitation change is tested here on present-day El Niño–Southern Oscillation (ENSO) precipitation shifts. This method, based on the weak temperature gradient approximation, assumes precipitation is associated with local surface relative humidity (RH) and surface air temperature (SAT), relative to the tropical mean. Observed and simulated changes in RH and SAT are subsequently used to diagnose changes in precipitation. Present-day ENSO precipitation shifts are successfully diagnosed using observations (correlation r = 0.69) and an ensemble of atmosphere-only (0.51 ≤ r ≤ 0.8) and coupled (0.5 ≤ r ≤ 0.87) climate model simulations. RH ( r = 0.56) is much more influential than SAT ( r = 0.27) in determining ENSO precipitation shifts for observations and climate model simulations over both land and ocean. Using intermodel differences, a significant relationship is demonstrated between method performance over ocean for present-day ENSO and projected global warming ( r = 0.68). As a caveat, the authors note that mechanisms leading to ENSO-related precipitation changes are not a direct analog for global warming–related precipitation changes. The diagnosis method presented here demonstrates plausible mechanisms that relate changes in precipitation, RH, and SAT under different climate perturbations. Therefore, uncertainty in future tropical precipitation changes may be linked with uncertainty in future RH and SAT changes.


2008 ◽  
Vol 21 (21) ◽  
pp. 5585-5602 ◽  
Author(s):  
Pei-Hua Tan ◽  
Chia Chou ◽  
Jien-Yi Tu

Abstract Hemispherically and temporally asymmetric tropical precipitation responses to global warming are evaluated in 13 different coupled atmosphere–ocean climate model simulations. In the late boreal summer, hemispherical averages of the tropical precipitation anomalies from the multimodel ensemble show a strong positive trend in the Northern Hemisphere and a weak negative trend in the Southern Hemisphere. In the late austral summer, on the other hand, the trends are reversed. This implies that the summer hemisphere becomes wetter and the winter hemisphere becomes a little drier in the tropics. Thus, the seasonal range of tropical precipitation, differences between wet and dry seasons, is increased. Zonal averages of the precipitation anomalies from the multimodel ensemble also reveal a meridional movement, which basically follows the seasonal migration of the main convection zone. Similar asymmetric features can be found in all 13 climate model simulations used in this study. Based on the moisture budget analysis, the vertical moisture advection associated with mean circulation is the main contribution for the robustness of the asymmetric distribution of the tropical precipitation anomalies. Under global warming, tropospheric water vapor increases as the temperature rises and most enhanced water vapor is in the lower troposphere. The ascending motion of the Hadley circulation then transports more water vapor upward, that is, anomalous moisture convergence, and enhances precipitation over the main convection zones. On the other hand, the thermodynamic effect associated with the descending motion of the Hadley circulation, that is, anomalous moisture divergence, reduces the precipitation over the descending regions.


2021 ◽  
Vol 118 (4) ◽  
pp. e2017524118
Author(s):  
Frances V. Davenport ◽  
Marshall Burke ◽  
Noah S. Diffenbaugh

Precipitation extremes have increased across many regions of the United States, with further increases anticipated in response to additional global warming. Quantifying the impact of these precipitation changes on flood damages is necessary to estimate the costs of climate change. However, there is little empirical evidence linking changes in precipitation to the historically observed increase in flood losses. We use >6,600 reports of state-level flood damage to quantify the historical relationship between precipitation and flood damages in the United States. Our results show a significant, positive effect of both monthly and 5-d state-level precipitation on state-level flood damages. In addition, we find that historical precipitation changes have contributed approximately one-third of cumulative flood damages over 1988 to 2017 (primary estimate 36%; 95% CI 20 to 46%), with the cumulative impact of precipitation change totaling $73 billion (95% CI 39 to $91 billion). Further, climate models show that anthropogenic climate forcing has increased the probability of exceeding precipitation thresholds at the extremely wet quantiles that are responsible for most flood damages. Climate models project continued intensification of wet conditions over the next three decades, although a trajectory consistent with UN Paris Agreement goals significantly curbs that intensification. Taken together, our results quantify the contribution of precipitation trends to recent increases in flood damages, advance estimates of the costs associated with historical greenhouse gas emissions, and provide further evidence that lower levels of future warming are very likely to reduce financial losses relative to the current global warming trajectory.


Sign in / Sign up

Export Citation Format

Share Document