Expression of mutated cationic trypsinogen reduces cellular viability in AR4-2J cells

2005 ◽  
Vol 334 (2) ◽  
pp. 721-728 ◽  
Author(s):  
Sebastian Gaiser ◽  
Astrid Ahler ◽  
Felix Gundling ◽  
Marie-Luise Kruse ◽  
Vuk Savkovic ◽  
...  
2007 ◽  
Vol 87 (2) ◽  
pp. 181 ◽  
Author(s):  
Katia Sivieri ◽  
Veridiana P.S. Cano ◽  
Sandro R. Valentini ◽  
Elizeu A. Rossi

2019 ◽  
Vol 18 (12) ◽  
pp. 1750-1760 ◽  
Author(s):  
Raquel P. Souza ◽  
Patrícia S. Bonfim-Mendonça ◽  
Gabrielle M.Z.F. Damke ◽  
Analine R.B. de-Assis Carvalho ◽  
Bianca A. Ratti ◽  
...  

Background: Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is the main bioactive component of Brazilian green propolis, and possesses, among other things, anticancer properties. However, to the best of our knowledge, there are no studies of artepillin C in cervical cancer. Method: To explore a new therapeutic candidate for cervical cancer, we have evaluated the effects of artepillin C on cellular viability in a comprehensive panel of human cervical cancer-derived cell lines including HeLa (human papillomavirus/HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16- and 18-positive) and C33A (HPV-negative) cells compared to a spontaneously immortalized human epithelial cell line (HaCaT). Results: Our results demonstrated that artepillin C had a selective effect on cellular viability and could induce apoptosis possibly by intrinsic pathway, likely a result of oxidative stress, in all cancer-derived cell lines but not in HaCaT. Additionally, artepillin C was able to inhibit the migration and invasion of cancer cells. Conclusion: Thus, artepillin C appears to be a promising new candidate as an anticancer drug for cervical cancer induced by different HPV types.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341029
Author(s):  
XIAOBO HUANG ◽  
JIAOJUAN ZOU ◽  
CHAN WANG ◽  
RUIQIANG HANG ◽  
JUNWEI QIAO ◽  
...  

In this study, we compared the bio-corrosion resistance and biocompatibility of a ZrTi -based BMGMC ( Zr 58.5 Ti 14.3 Ni 4.9 Cu 6.1 Nb 5.2 Be 11.0). The Ti - 6Al - 4V alloy was used as a reference material. By utilizing the electrochemical measurements and M3T3 cell culture, the corrosion resistance and biocompatibility of this BMGMC were evaluated. The BMGMC displayed high positive corrosion potentials and low corrosion current densities, which indicated that this material exhibited a highly improved corrosion resistance than the Ti alloy. The cells could adhere on the surface of this BMGMC and exhibited improved cellular behaviors, such as cellular viability and cytoskeketal structure. In summary, the ZrTi -based BMGMC showed great potential for applications in the hard tissue implants.


Pancreas ◽  
2003 ◽  
Vol 27 (2) ◽  
pp. 199-201 ◽  
Author(s):  
Fukashi Ochi ◽  
Masatoshi Fujii ◽  
Toshiyuki Sakai ◽  
Masahiko Sugano ◽  
Kiyoshi Oshiro ◽  
...  

2017 ◽  
Vol 70 (1) ◽  
pp. 261-273 ◽  
Author(s):  
M. Gargotti ◽  
U. Lopez-Gonzalez ◽  
H. J. Byrne ◽  
A. Casey

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3801
Author(s):  
Dijana Drača ◽  
Milan Marković ◽  
Marta Gozzi ◽  
Sanja Mijatović ◽  
Danijela Maksimović-Ivanić ◽  
...  

Gliomas and glioblastomas are very aggressive forms of brain tumors, prone to the development of a multitude of resistance mechanisms to therapeutic treatments, including cytoprotective autophagy. In this work, we investigated the role and mechanism of action of the combination of a ruthenacarborane derivative with 8-hydroxyquinoline (8-HQ), linked via an ester bond (complex 2), in rat astrocytoma C6 and human glioma U251 cells, in comparison with the two compounds alone, i.e., the free carboxylic acid (complex 1) and 8-HQ, and their non-covalent combination ([1 + 8-HQ], in 1:1 molar ratio). We found that only complex 2 was able to significantly affect cellular viability in glioma U251 cells (IC50 11.4 μM) via inhibition of the autophagic machinery, most likely acting at the early stages of the autophagic cascade. Contrary to 8-HQ alone, complex 2 was also able to impair cellular viability under conditions of glucose deprivation. We thus suggest different mechanisms of action of ruthenacarborane complex 2 than purely organic quinoline-based drugs, making complex 2 a very attractive candidate for evading the known resistances of brain tumors to chloroquine-based therapies.


Sign in / Sign up

Export Citation Format

Share Document