Role of DDX53 in taxol-resistance of cervix cancer cells in vitro

2018 ◽  
Vol 506 (3) ◽  
pp. 641-647 ◽  
Author(s):  
Su Yeon Park ◽  
Won jin Kim ◽  
Jae hwan Byun ◽  
Jae Jun Lee ◽  
Dooil Jeoung ◽  
...  
2016 ◽  
Vol 38 (3) ◽  
pp. 1003-1014 ◽  
Author(s):  
Aiyu Zhu ◽  
Yan Li ◽  
Wei Song ◽  
Yumei Xu ◽  
Fang Yang ◽  
...  

Background/Aims: Androgen receptor (AR), a steroid hormone receptor, has recently emerged as prognostic and treatment-predictive marker in breast cancer. Previous studies have shown that AR is widely expressed in up to one-third of triple-negative breast cancer (TNBC). However, the role of AR in TNBC is still not fully understood, especially in mesenchymal stem-like (MSL) TNBC cells. Methods: MSL TNBC MDA-MB-231 and Hs578T breast cancer cells were exposed to various concentration of agonist 5-α-dihydrotestosterone (DHT) or nonsteroidal antagonist bicalutamide or untreated. The effects of AR on cell viability and apoptosis were determined by MTT assay, cell counting, flow cytometry analysis and protein expression of p53, p73, p21 and Cyclin D1 were analyzed by western blotting. The bindings of AR to p73 and p21 promoter were detected by ChIP assay. MDA-MB-231 cells were transplanted into nude mice and the tumor growth curves were determined and expression of AR, p73 and p21 were detected by Immunohistochemistry (IHC) staining after treatment of DHT or bicalutamide. Results: We demonstrate that AR agonist DHT induces MSL TNBC breast cancer cells proliferation and inhibits apoptosis in vitro. Similarly, activated AR significantly increases viability of MDA-MB-231 xenografts in vivo. On the contrary, AR antagonist, bicalutamide, causes apoptosis and exerts inhibitory effects on the growth of breast cancer. Moreover, DHT-dependent activation of AR involves regulation in the cell cycle related genes, including p73, p21 and Cyclin D1. Further investigations indicate the modulation of AR on p73 and p21 mediated by direct binding of AR to their promoters, and DHT could make these binding more effectively. Conclusions: Our study demonstrates the tumorigenesis role of AR and the inhibitory effect of bicalutamide in AR-positive MSL TNBC both in vitro and in vivo, suggesting that AR inhibition could be a potential therapeutic approach for AR-positive TNBC patients.


2021 ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract BackgroundsCSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet.MethodsData from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR-CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. CCK8, clone formation assay and cell cycle assay were also employed. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. Moreover, MLN4924 was applied in Siha and Hela with CSN5 overexpression.ResultsWe found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells.ConclusionsOur findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


2014 ◽  
Vol 60 (3) ◽  
pp. 322-331 ◽  
Author(s):  
E.A. Avilova ◽  
O.E. Andreeva ◽  
V.A. Shatskaya ◽  
M.A. Krasilnikov

The main goal of this work was to study the intracellular signaling pathways responsible for the development of hormone resistance and maintaining the autonomous growth of breast cancer cells. In particular, the role of PAK1 (p21-activated kinase 1), the key mitogenic signaling protein, in the development of cell resistance to estrogens was analyzed. In vitro studies were performed on cultured breast cancer cell lines: estrogen-dependent estrogen receptor (ER)-positive MCF-7 cells and estrogen-resistant ER-negative HBL-100 cells. We found that the resistant HBL-100 cells were characterized by a higher level of PAK1 and demonstrated PAK1 involvement in the maintaining of estrogen-independent cell growth. We have also shown PAK1 ability to up-regulate Snail1, one of the epithelial-mesenchymal transition proteins, and obtained experimental evidence for Snail1 importance in the regulation of cell proliferation. In general, the results obtained in this study demonstrate involvement of PAK1 and Snail1 in the formation of estrogen-independent phenotype of breast cancer cells showing the potential role of both proteins as markers of hormone resistance of breast tumors.


2021 ◽  
Author(s):  
xingang wang ◽  
YAN ZHENG ◽  
YU WANG

Abstract Background and AimsPseudopodium-enriched atypical kinase 1 (PEAK1) has reported to be upregulated in human malignancies and related with poor prognosis. Enhanced PEAK1 expression facilitates tumor cell survival, invasion, metastasis and chemoresistance. However, the role of PEAK1 in breast cancer is not clear. Here, we investigated the PEAK1 expression in breast cancer and analyzed its relation with clinicopathological status and chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated the role of PEAK1 on breast cancer cells in vitro and in vivo. MethodsImmunohistochemistry (IHC) was performed in 112 surgical resected breast cancer tissues. The associations between clinicopathological status, multi-drug resistance and PEAK1 expression were determined. Effect of PEAK1 overexpression or down-expression on proliferation, colony formation, invasion, migration, metastasis and Doxorubicin sensitivity in the MCF-7 cells in vitro and in vivo was detected. ResultsPEAK1 was overexpressed in breast cancer tissues and NAC -resistant breast cancer tissues. High PEAK1 expression was related with tumor size, high tumor grade, T stage, LN metastasis, recurrence, Ki-67 expression, Her-2 expression and multi-drug resistance. Targeting PEAK1 inhibited cell growth, invasion, metastasis and reversed chemoresistance to Doxorubicin in breast cancer cells in vitro and in vivo. ConclusionHigh PEAK1 expression was associated with invasion, metastasis and chemoresistance of breast cancers. Furthermore, targeting PEAK1 could inhibit cell growth and metastasis, and reverse chemoresistance in breast cancer cells, which provides an effective treatment strategies for breast cancer.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2722
Author(s):  
Ivan V. Maly ◽  
Wilma A. Hofmann

High fat consumption can enhance metastasis and decrease survival in prostate cancer, but the picture remains incomplete on the epidemiological and cell-biological level, impeding progress toward individualized recommendations in the clinic. Recent work has highlighted the role of exosomes secreted by prostate cancer cells in the progression of the disease, particularly in metastatic invasion, and also the utility of targeting these extracellular vesicles for diagnostics, as carriers of disease progression markers. Here, we investigated the question of a potential impact of the chief nutritional saturated fatty acid on the exosome secretion. Palmitic acid decreased the secretion of exosomes in human prostate cancer cells in vitro in a concentration-dependent manner. At the same time, the content of some prospective metastatic markers in the secreted exosomal fraction was also reduced, as was the ability of the cells to invade across extracellular matrix barriers. While by themselves our in vitro results imply that on the cell level, palmitic acid may be beneficial vis-à-vis the course of the disease, they also suggest that, by virtue of the decreased biomarker secretion, palmitic acid has the potential to cause unjustified deprioritization of treatment in obese and lipidemic men.


Biosensors ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 5 ◽  
Author(s):  
Mioara Larion ◽  
Tyrone Dowdy ◽  
Victor Ruiz-Rodado ◽  
Matthew Meyer ◽  
Hua Song ◽  
...  

Isocitrate dehydrogenase 1 (IDH1) mutations in gliomas, fibrosarcoma, and other cancers leads to a novel metabolite, D-2-hydroxyglutarate, which is proposed to cause tumorigenesis. The production of this metabolite also causes vulnerabilities in cellular metabolism, such as lowering NADPH levels. To exploit this vulnerability, we treated glioma and fibrosarcoma cells that harbor an IDH1 mutation with an inhibitor of nicotinamide adenine dinucleotide (NAD+) salvage pathway, FK866, and observed decreased viability in these cells. To understand the mechanism of action by which the inhibitor FK866 works, we used Raman imaging microscopy and identified that proteins and lipids are decreased upon treatment with the drug. Raman imaging showed a different distribution of lipids throughout the cell in the presence of the drug compared with the untreated cells. We employed nuclear magnetic resonance NMR spectroscopy and mass spectrometry to identify the classes of lipids altered. Our combined analyses point to a decrease in cell division due to loss of lipid content that contributes to membrane formation in the in vitro setting. However, the FK866 drug did not have the same potency in vivo. The use of Raman imaging microscopy indicated an opposite trend of lipid distribution in the tissue collected from treated versus untreated mice when compared with the cells. These results demonstrate the role of Raman imaging microscopy to identify and quantify metabolic changes in cancer cells and tissue.


2016 ◽  
Vol 44 (07) ◽  
pp. 1491-1506 ◽  
Author(s):  
Huiying Fu ◽  
Renjie Wu ◽  
Yuanyuan Li ◽  
Lizong Zhang ◽  
Xiaofang Tang ◽  
...  

Carthamus tinctorius L. is a traditional Chinese medicine that activates blood circulation and dissipates blood stasis, and has been extensively used as antitumor treatment in a clinical setting in single or in compound preparation form. However, empirical evidence and a better understanding of the possible mechanisms involved are still required. Here, we investigated the role of safflower yellow (SY), the active ingredient of C. tinctorius, in the pulmonary metastasis of breast cancer, and the underlying mechanism of action. EGF-meditated time- and dose-dependent cell response profiles were applied to screen for the activity of SY in vitro, while orthotopic lung metastasis and intravenous injection were used to evaluate the antimetastatic role of SY in vivo. SY could dose-dependently inhibit EGF-mediated time- and dose-dependent cell response profiles by inhibiting cytoskeletal rearrangement. We also found that SY significantly inhibited the migration of breast cancer cells in vitro and pulmonary metastasis of breast cancer cells in vivo. Consistent with these phenotypes, formation of invadopodia and the expression of MMP-9 and p-Src proteins were decreased after EGF stimulation in MBA-MD-231 cells treat with SY, as well as in lung metastatic foci. Additionally, circulating tumor cells retained in lung capillaries were also reduced. These results suggest that the antimetastatic effect of SY is due to its inhibition of invadopodia formation, which occurs mainly through Src-dependent cytoskeleton rearrangement. We suggest that SY should be considered as a potential novel therapeutic agent for the treatment of breast cancer.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23135-e23135
Author(s):  
Marianna Kruithof-de Julio ◽  
Eugenio Zoni ◽  
Letizia Astrologo ◽  
Janine Melsen ◽  
Irena Klima ◽  
...  

e23135 Background: Prostate Cancer (PCa) is the most common cancer in males and the second leading cause of death from cancer in men. Understanding the factors that regulate homing and survival of metastatic cancer cells in the bone is important for the identification of new therapeutic targets. High MCAM expression has been detected in the stroma of lytic and blastic lesions in preclinical models of PCa bone metastasis. The objective of this study is to characterize the role of MCAM in the maintenance of the aggressive phenotype in human PCa. Methods: We knocked and down MCAM in the lytic PC-3M-Pro4Luc2_dTomato and in the blastic C4-2B_dTomato PCa cell lines. Validation was done at both protein and RNA level. We performed functional assays such as migration and proliferation. RT-qPCR was used to test MCAM knockdown on EMT markers. The effect of the knockdown on the maintenance of cancer stem/progenitor-like cells was measured by ALDEFLUOR. Results: MCAM knockdown reduced proliferation in PC-3M-Pro4Luc2_dTomato PCa cells and resulted in increased E-Cadherin expression. Metastatic human PCa cells target the hematopoietic stem cell (HSC) niche in the bone marrow at the level of an “endosteal/osteoblast” niche and a “vascular/perivascular” niche. We set-up an in vitro model of “osteoblast niche” to study the prostate cancer cells upon co-culture with osteoblasts and to determine the effects on cancer stem/progenitor-like markers. We found that MCAM is required for the osteoblast-mediated induction of ALDH activity on PCa cells and MCAM knockdown prevented the increase in the size of the ALDHhigh subpopulation in PC-3M-Pro4Luc2_dTomato, mediated by human osteoblasts. Additionally, MCAM knockdown in PCa cells co-culture with osteoblast, prevented the induction of MCAM expression by osteoblasts. Finally, MCAM is significantly increased in the ALDHhigh cells and identifies a new subset of ALDHhigh / MCAMhigh cells which could be depleted upon MCAM knockdown. Conclusions: We detected a new subset of ALDHhigh/MCAMhigh cells and demonstrated the MCAM influences the maintenance of an aggressive-mesenchymal phenotype in human PCa. Therefore, MCAM represent an interesting target molecule to modulate the behavior of aggressive PCa cells.


Sign in / Sign up

Export Citation Format

Share Document