Coordination of ER and oxidative stress signaling: The PERK/Nrf2 signaling pathway

2006 ◽  
Vol 38 (3) ◽  
pp. 317-332 ◽  
Author(s):  
Sara B. Cullinan ◽  
J. Alan Diehl
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 127-127 ◽  
Author(s):  
Rajasekhar NVS Suragani ◽  
Sijin Liu ◽  
Wanting Zhao ◽  
Jane-Jane Chen

Abstract Maturation of erythroid precursors requires active synthesis of hemoglobin which consists of two pairs of α- and β-globin subunits with each monomer bound to a heme moiety. Heme Regulated Inhibitor (HRI) is the only eIF2αkinase responsible for the balanced synthesis of heme and globin at translational level in erythroid cells. Activation of HRI in heme deficiency leads to phosphorylation of the α-subunit of eukaryotic initiation factor (eIF2α) and inhibition of protein synthesis. HRI is also activated by denatured proteins and oxidative stress. In addition to general inhibition of protein synthesis, phosphorylation of eIF2α (eIF2αP) also leads to the induction of a stress signaling pathway. Activating transcription factor 4 (Atf4) mRNA is preferentially translated amidst global inhibition of protein synthesis. Atf4 activates transcription of stress response proteins, Chop (CCAAT/enhancer binding protein homologous protein-10) and the non-enzymatic cofactor of eIF2α phosphatase (PP1A) Gadd34. These stress response proteins help cells in mitigating the stress. While the role of HRI in translational regulation of non-nucleated reticulocytes is well established, the HRIdependent Atf4 stress signaling pathway of nucleated erythroid precursors is unknown. Sodium arsenite toxicity was used as a model system of oxidative stress to elucidate the HRI signaling pathway in Hri +/+ and −/− E14.5 mouse fetal liver erythroid precursors. In HRI deficiency, erythroid precursors were more sensitive to arsenite toxicity with decreased cell viability and increased apoptosis, by caspase 3 executed intrinsic apoptotic pathway. HRI was activated by autophosphorylation as early as 15 minutes following arsenite treatment. In addition to increased eIF2αP, there was induction of Atf4, Chop and Gadd34 in Hri+/+ fetal liver cells. Importantly, in Hri−/− cells neither the phosphorylation of eIF2α nor the expression of Atf4, Chop and Gadd34 was increased upon arsenite treatment. In addition, we also observed HRI dependent induction of Heme Oxygenase 1 (HO-1) that plays a pivotal role in adaptation to oxidative stress. These results demonstrate that HRI induces a signaling pathway for adaptive gene expression to protect the nucleated erythroid precursors from apoptosis upon oxidative stress. Iron overload, accumulation of unpaired α-globin and oxidative stress are well documented in β-thalassemia. Recently, HRI was discovered to be necessary for the survival of β-thalassemic mice. β-thalassemic mice lacking one copy of HRI (Hri+/− Hbb−/−) also manifest a more severe syndrome of the disease. We have investigated the activation of eIF2αP/Atf4 signaling pathway in Hri+/−Hbb−/− β-thalassemic erythroid cells using eIF2αP phosphatase (Gadd34) inhibitor salubrinal. Treatment of reticulocytes from Hri+/−Hbb−/− mice with salubrinal increased eIF2αP and resulted in inhibition of newly synthesized globin protein synthesis. The decreased globin protein synthesis also resulted in decreased aggregation of the unpaired α-globins. Furthermore, treatment of salubrinal in nucleated fetal liver erythroblasts also increased Chop expression and decreased apoptosis. Thus, activation of the eIF2αP/Atf4 pathway by small chemicals might be a novel pharmaceutical approach to decrease proteotoxicity and apoptosis for the treatment of β-thalassemia.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 862
Author(s):  
Yi-Jen Peng ◽  
Jeng-Wei Lu ◽  
Chian-Her Lee ◽  
Herng-Sheng Lee ◽  
You-Hsiang Chu ◽  
...  

Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the deterioration of articular cartilage. The progression of OA leads to an increase in inflammatory mediators in the joints, thereby promoting the destruction of the cartilage matrix. Recent studies have reported on the anti-inflammatory and antioxidant properties of cardamonin, which also appears to interact with cellular targets, such as nuclear erythroid 2-related factor 2 (Nrf2), extracellular signal-regulated kinase (ERK), and mammalian target of rapamycin (mTOR) during the progression of tumors. To date, few studies have investigated the effects of cardamonin on chondrocyte inflammation. In the current study, we determined that treating interleukin-1 beta (IL-1β-stimulated chondrocyte cells) with cardamonin significantly reduced the release of nitric oxide (NO) and prostaglandin E2 (PGE2) and significantly inhibited the expression of pro-inflammatory proteins, including inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Cardamonin was also shown to: (1) inhibit the activation and production of matrix metalloproteinases (MMPs), (2) suppress the nuclear factor-κB (NF-κB) signaling pathway, (3) suppress the expression of toll-like receptor proteins, (4) activate the Nrf2 signaling pathway, and (5) increase the levels of antioxidant proteins heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1). The increase in antioxidant proteins led to corresponding antioxidant effects (which were abolished by Nrf2 siRNA). Our findings identify cardamonin as a candidate Nrf2 activator for the treatment and prevention of OA related to inflammation and oxidative stress.


2021 ◽  
Vol 22 (11) ◽  
pp. 5995
Author(s):  
Chand Basha Davuljigari ◽  
Frederick Adams Ekuban ◽  
Cai Zong ◽  
Alzahraa A. M. Fergany ◽  
Kota Morikawa ◽  
...  

Acrylamide is a well characterized neurotoxicant known to cause neuropathy and encephalopathy in humans and experimental animals. To investigate the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in acrylamide-induced neuropathy, male C57Bl/6JJcl adult mice were exposed to acrylamide at 0, 200 or 300 ppm in drinking water and co-administered with subcutaneous injections of sulforaphane, a known activator of the Nrf2 signaling pathway at 0 or 25 mg/kg body weight daily for 4 weeks. Assessments for neurotoxicity, hepatotoxicity, oxidative stress as well as messenger RNA-expression analysis for Nrf2-antioxidant and pro-inflammatory cytokine genes were conducted. Relative to mice exposed only to acrylamide, co-administration of sulforaphane protected against acrylamide-induced neurotoxic effects such as increase in landing foot spread or decrease in density of noradrenergic axons as well as hepatic necrosis and hemorrhage. Moreover, co-administration of sulforaphane enhanced acrylamide-induced mRNA upregulation of Nrf2 and its downstream antioxidant proteins and suppressed acrylamide-induced mRNA upregulation of tumor necrosis factor alpha (TNF-α) and inducible nitric oxide synthase (iNOS) in the cerebral cortex. The results demonstrate that activation of the Nrf2 signaling pathway by co-treatment of sulforaphane provides protection against acrylamide-induced neurotoxicity through suppression of oxidative stress and inflammation. Nrf2 remains an important target for the strategic prevention of acrylamide-induced neurotoxicity.


2021 ◽  
pp. jim-2020-001437
Author(s):  
Ming Chen ◽  
Minghui Li ◽  
Na Zhang ◽  
Wenwen Sun ◽  
Hui Wang ◽  
...  

This study was aimed to investigate the effects of miR-218-5p on the proliferation, apoptosis, autophagy, and oxidative stress of rheumatoid arthritis synovial fibroblasts (RASFs), and the related mechanisms. Quantitative reverse transcription–PCR showed that the expression of miR-218-5p in rheumatoid arthritis synovial tissue was significantly higher than that in healthy synovial tissue. Compared with healthy synovial fibroblasts, miR-218-5p expression was obviously upregulated in RASFs, while KLF9 protein expression was markedly downregulated. Mechanistically, miR-218-5p could directly bind to the 3′ untranslated region of KLF9 to inhibit the expression of KLF9. Additionally, transfection of miR-218-5p small interfering RNA (siRNA) inhibited the proliferation but promoted apoptosis and autophagy of RASFs. Simultaneously, miR-218-5p silencing reduced reactive oxygen species and malondialdehyde levels and increased superoxide dismutase and glutathione peroxidase activity to improve oxidative stress in RASFs. More importantly, the introduction of KLF9 siRNA reversed the effects of miR-218-5p siRNA transfection on RASF proliferation, apoptosis, autophagy, and oxidative stress. What is more, silencing miR-218-5p inhibited the activation of JAK2/STAT3 signaling pathway by targeting KLF9. Collectively, knockdown of miR-218-5p could regulate the proliferation, apoptosis, autophagy and oxidative stress of RASFs by increasing the expression of KLF9 and inhibiting the activation of the JAK2/STAT3 signaling pathway, which may provide a potential target for the mechanism research of RA.


Sign in / Sign up

Export Citation Format

Share Document