scholarly journals Influence of the reaction conditions on the enzyme catalyzed transesterification of castor oil: A possible step in biodiesel production

2017 ◽  
Vol 243 ◽  
pp. 366-374 ◽  
Author(s):  
Thalles A. Andrade ◽  
Massimiliano Errico ◽  
Knud V. Christensen
Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 864 ◽  
Author(s):  
Sánchez ◽  
Encinar ◽  
Nogales ◽  
González

The use of biodiesel and the requirement of improving its production in a more efficient and sustainable way are becoming more and more important. In this research work, castor oil was demonstrated to be an alternative feedstock for obtaining biodiesel. The production of biodiesel was optimized by the use of a two-step process. In this process, methanol and KOH (as a catalyst) were added in each step, and the glycerol produced during the first stage was removed before the second reaction. The reaction conditions were optimized, considering catalyst concentration and methanol/oil molar ratio for both steps. A mathematical model was obtained to predict the final ester content of the biodiesel. Optimal conditions (0.08 mol·L−1 and 0.01 mol·L−1 as catalyst concentration, 5.25:1 and 3:1 as methanol/oil molar ratio for first and second step, respectively) were established, taking into account the biodiesel quality and an economic analysis. This type of process allowed cost saving, since the amounts of methanol and catalyst were significantly reduced. An estimation of the final manufacturing cost of biodiesel production was carried out.


2017 ◽  
Vol 33 (1) ◽  
pp. 66
Author(s):  
A. Garba ◽  
M. M. Abarshi ◽  
M. B. Shuaib ◽  
R. Sulaiman

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


2018 ◽  
Vol 35 (1) ◽  
pp. 47
Author(s):  
Fernando Carvalho Silva ◽  
Kiany Sirley Brandão Cavalcante ◽  
Hilton Costa Louzeiro ◽  
Katia Regina Marques Moura ◽  
Adeilton Pereira Maciel ◽  
...  

Maranhão state in Brazil presents a big potential for the cultivation of several oleaginous species, such as babassu, soybean, castor oil plant, etc... These vegetable oils can be transformed into biodiesel by the transesterification reaction in an alkaline medium, using methanol or ethanol. The biodiesel production from a blend of these alcohols is a way of adding the technical and economical advantages of methanol to the environmental advantages of ethanol. The optimized alcohol blend was observed to be a methanol/ethanol volume ratio of 80 % MeOH: 20 % EtOH. The ester content was of 98.70 %, a value higher than the target of the ANP, 96.5 % (m/m), and the biodiesel mass yield was of 95.32 %. This biodiesel fulfills the specifications of moisture, specific gravity, kinematic viscosity and percentages of free alcohols (methanol plus ethanol) and free glycerin.


2014 ◽  
Vol 31 (2) ◽  
pp. 90 ◽  
Author(s):  
S Ismail ◽  
S. A Abu ◽  
R Rezaur ◽  
H Sinin

In this study, the optimum biodiesel conversion from crude castor oil to castor biodiesel (CB) through transesterification method was investigated. The base catalyzed transesterification under different reactant proportion such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of castor biodiesel. The optimum condition for base catalyzed transesterification of castor oil was determined to be 1:4.5 of oil to methanol ratio and 0.005:1 of potassium hydroxide to oil ratio. The fuel properties of the produced CB such as the calorific value, flash point and density were analyzed and compared to conventional diesel. Diesel engine performance and emission test on different CB blends proved that CB was suitable to be used as diesel blends. CB was also proved to have lower emission compared to conventional diesel.


Author(s):  
Bruna Ricetti Margarida ◽  
Luana I. Flores ◽  
Luiz Fernando De Lima Luz Jr. ◽  
Marcelo Kaminski Lenzi

Biodiesel production from residual sources is gaining considerable attention nowadays. Consequently, many different studies with in-depth analysis concerning the influence of the transesterification reaction conditions are available in the literature. However, further evaluation of the esterification of fatty acids in the biodiesel industry is still needed. In this study, different parameters influencing the esterification reaction behavior using ethanol as the alcohol and lauric acid as the FFA are analyzed through factorial design and ANOVA methodologies to verify which ones are significant in the reaction. In total, four parameters were evaluated: temperature, catalyst concentration, ethanol/FFA ratio, and ethanol/water ratio. The temperature and ethanol/water ratio had a major influence on the reaction, as increasing these parameters greatly improved reaction conversion. It was also verified that using hydrous ethanol in the esterification reaction is possible in some conditions.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 94 ◽  
Author(s):  
Samantha Pantoja ◽  
Vanessa Mescouto ◽  
Carlos Costa ◽  
José Zamian ◽  
Geraldo Rocha Filho ◽  
...  

The buriti palm (Mauritia flexuosa) is a palm tree widely distributed throughout tropical South America. The oil extracted from the fruits of this palm tree is rich in natural antioxidants. The by-products obtained from the buriti palm have social and economic importance as well, hence the interest in adding value to the residue left from refining this oil to obtain biofuel. The process of methyl esters production from the buriti oil soapstock was optimized considering acidulation and esterification. The effect of the molar ratio of sulfuric acid (H2SO4) to soapstock in the range from 0.6 to 1.0 and the reaction time (30–90 min) were analyzed. The best conditions for acidulation were molar ratio 0.8 and reaction time of 60 min. Next, the esterification of the fatty acids obtained was performed using methanol and H2SO4 as catalyst. The effects of the molar ratio (9:1–27:1), percentage of catalyst (2–6%) and reaction time (1–14 h) were investigated. The best reaction conditions were: 18:1 molar ratio, 4% catalyst and 14 h reaction time, which resulted in a yield of 92% and a conversion of 99.9%. All the key biodiesel physicochemical characterizations were within the parameters established by the Brazilian standard. The biodiesel obtained presented high ester content (96.6%) and oxidative stability (16.1 h).


Sign in / Sign up

Export Citation Format

Share Document