Optimization of Esterification Reaction Conditions Through the Analysis of the Main Significant Variables

Author(s):  
Bruna Ricetti Margarida ◽  
Luana I. Flores ◽  
Luiz Fernando De Lima Luz Jr. ◽  
Marcelo Kaminski Lenzi

Biodiesel production from residual sources is gaining considerable attention nowadays. Consequently, many different studies with in-depth analysis concerning the influence of the transesterification reaction conditions are available in the literature. However, further evaluation of the esterification of fatty acids in the biodiesel industry is still needed. In this study, different parameters influencing the esterification reaction behavior using ethanol as the alcohol and lauric acid as the FFA are analyzed through factorial design and ANOVA methodologies to verify which ones are significant in the reaction. In total, four parameters were evaluated: temperature, catalyst concentration, ethanol/FFA ratio, and ethanol/water ratio. The temperature and ethanol/water ratio had a major influence on the reaction, as increasing these parameters greatly improved reaction conversion. It was also verified that using hydrous ethanol in the esterification reaction is possible in some conditions.

2019 ◽  
Vol 1 (3) ◽  
pp. 68
Author(s):  
Puguh Setyopratomo ◽  
Edy Purwanto ◽  
H. Yefrico ◽  
H. Yefrico

The synthesis of glycerol mono oleic from oleic acid and glycerol is classified as an esterification reaction. This research is aimed to study the influent of reaction temperature and catalyst concentration on reaction conversion. During the experiment the temperature of reaction mixture was varied as 110 oC, 130 oC, and 150 oC, while the catalyst concentration of 1%, 3 %, and 5% was used. The batch experiment was conducted in a glass reactor equipped with termometer, agitator, and reflux condensor. The oleic acid – glycerol mol ratio of 1 : 2 was used as a mixture feed. To maintain the reaction temperature at certain level, the oil bath was used. After the temperature of reaction mixture was reached the expected value, then H2SO4 catalyst was added to the reactor.  To measure the extent of the reaction, every 30 minutes the sample was drawn out from the reactor vessel. The sample analysis include acid number, density, and viscosity measurement. From this research the optimum condition which is the temperature of reaction of 150 oC and 1% catalyst concentration was obtained. At this optimum condition the convertion reach 86% and the analysis of other physical properties of the product show the acid number of 24.12, the density of 0.922 g/cc, and the viscosity of 118.4 cp.


2016 ◽  
Vol 22 (4) ◽  
pp. 445-452 ◽  
Author(s):  
Joana Dias ◽  
Pedro Leite ◽  
Maria Alvim-Ferraz ◽  
Manuel Almeida

The present study evaluated the recycling of crude glycerol as source of catalyst for biodiesel production. For that purpose, two sets of experiments were conducted. In the first set (A), biodiesel was synthesized by conventional methanolysis of sunflower oil using NaOH as catalyst at 65?C during 1 h and varying catalyst concentration (0.4 - 1.2 wt.%) or methanol to oil molar ratio (6:1-12:1). The second set (B) was performed by replicating the conditions of set A and considering the use of crude glycerol as source of catalyst. The evaluation of excess methanol and catalyst distribution in the crude products was performed. For both sets of experiments, product yield and quality (viscosity and purity) were determined. Methanol was predominantly in the glycerol phase (54 - 68%), with negligible effect of variation in catalyst concentration and higher percentages found when higher methanol to oil molar ratios were used, due to a higher polarity of this phase. In most cases, catalyst was predominantly in the crude glycerol (53 wt.% in average) and no clear relation was found between catalyst distribution and the different reaction conditions studied. The results from set A showed a clear influence of catalyst concentration in biodiesel conversion and a minor effect of methanol to oil molar ratio. The best conditions were 6:1 methanol to oil molar ratio and 0.6 wt.% of catalyst leading to a product yield of 95.1 wt.%, a purity of 99.3% and a viscosity of 4.59 mm2s-1. The second set of experiments showed different trends and variability compared to the first one and the results indicated that catalyst might be altered during glycerol storage. It was found an effect of methanol to oil molar ratio in reaction conversion with the highest purity (96.9 wt.%) being obtained when the highest molar ratio was used (12:1) possibly due to the reduced mass transfer limitations. Overall, the results clearly show the potential of using crude glycerol as source of catalyst, avoiding the use of new catalyst and allowing a more sustainable biodiesel production.


2019 ◽  
Vol 13 (4) ◽  
pp. 464-474 ◽  
Author(s):  
Youzhou Jiao ◽  
Yahe Mei ◽  
Le Wang ◽  
Jiaao Liu ◽  
Zhiping Zhang ◽  
...  

The innocuous utilization of diseased swine carcasses is a key issue in reducing environmental pollution and ensuring safety in animal husbandry. In this study, by using fat from diseased swine carcasses as raw materials, response surface experiments were conducted to investigate the influences of reaction time, catalyst concentration, reaction temperature, and methanol/oil molar ratio on the biodiesel purity and the optimum conditions for biodiesel production were determined. Furthermore, three-dimensional (3D) ultrasound assistance was adopted and kinetic analysis was performed. The results show that the influencing factors on biodiesel purity, in descending order, were determined to be reaction temperature > catalyst concentration > reaction time > methanol/oil molar ratio. Moreover, the maximum biodiesel purity was 93.7% under the following optimal conditions: catalyst concentration of 5.0 wt%; reaction temperature of 68 °C; methanol/oil molar ratio of 10:1; reaction time of 37 h. When 3D ultrasound assistance was adopted, the maximum biodiesel purity of 98.1% was obtained for the reaction process of 8 h under the ultrasound power and frequency of 500 W and 20 kHz, respectively. And the esterification reaction time was significantly reduced, compared to without ultrasound assistance. The results of kinetic analysis demonstrate that the reaction rate constants of the ultrasound group were 4.45–5.52 times greater than that of the control group. And the activation energy for the ultrasound group was 25.58 kJ/mol, which is 22.81% lower than that of the control group. This study will help to conduct large-batch biodiesel production from diseased swine carcasses in the future.


Catalysts ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 864 ◽  
Author(s):  
Sánchez ◽  
Encinar ◽  
Nogales ◽  
González

The use of biodiesel and the requirement of improving its production in a more efficient and sustainable way are becoming more and more important. In this research work, castor oil was demonstrated to be an alternative feedstock for obtaining biodiesel. The production of biodiesel was optimized by the use of a two-step process. In this process, methanol and KOH (as a catalyst) were added in each step, and the glycerol produced during the first stage was removed before the second reaction. The reaction conditions were optimized, considering catalyst concentration and methanol/oil molar ratio for both steps. A mathematical model was obtained to predict the final ester content of the biodiesel. Optimal conditions (0.08 mol·L−1 and 0.01 mol·L−1 as catalyst concentration, 5.25:1 and 3:1 as methanol/oil molar ratio for first and second step, respectively) were established, taking into account the biodiesel quality and an economic analysis. This type of process allowed cost saving, since the amounts of methanol and catalyst were significantly reduced. An estimation of the final manufacturing cost of biodiesel production was carried out.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 655 ◽  
Author(s):  
Jéssica Siqueira Mancilha Nogueira ◽  
João Paulo Alves Silva ◽  
Solange I. Mussatto ◽  
Livia Melo Carneiro

This study aimed to evaluate the synthesis and application of heterogeneous catalysts based on heteropolyacids for 5-hydroxymethylfurfural (HMF) production from glucose. Initially, assays were carried out in order to establish the most favorable catalyst synthesis conditions. For such purpose, calcination temperature (300 or 500 °C), type of support (Nb2O5 or Al2O3), and active phase (H3PW12O40—HPW or H3PMo12O40—HPMo) were tested and combined based on Taguchi’s L8 orthogonal array. As a result, HPW-Nb2O5 calcined at 300 °C was selected as it presented optimal HMF production performance (9.5% yield). Subsequently, the reaction conditions capable of maximizing HMF production from glucose using the selected catalyst were established. In these experiments, different temperatures (160 or 200 °C), acetone-to-water ratios (1:1 or 3:1 v/v), glucose concentrations (50 or 100 g/L), and catalyst concentrations (1 or 5% w/v) were evaluated according to a Taguchi’s L16 experimental design. The conditions that resulted in the highest HMF yield (40.8%) consisted of using 50 g/L of glucose at 160 °C, 1:1 (v/v) acetone-to-water ratio, and catalyst concentration of 5% (w/v). Recycling tests revealed that the catalyst can be used in four runs, which results in the same HMF yield (approx. 40%).


2012 ◽  
Vol 66 (1) ◽  
Author(s):  
Adeeb Hayyan ◽  
Farouq Mjalli ◽  
Mohamed Mirghani ◽  
Mohd Hashim ◽  
Maan Hayyan ◽  
...  

AbstractAcidic crude palm oil (ACPO) produced from palm oil mills with an acid value of 18 mg g−1 was considered to be a possible feedstock for biodiesel production. Due to its high acidity, conventional transesterification cannot be applied directly for biodiesel production. Methane sulphonic acid (MSA, CH3SO3H) is used to reduce the acidity prior to the alkaline transesterification reaction. The laboratory-scale experiments involved an MSA to ACPO dosage of 0.25–3.5 %, a molar ratio (methanol to ACPO) from 4: 1 to 20: 1, reaction temperature of 40–80°C, reaction time of 3–150 min, and stirrer speed of 100–500 min−1. The optimum esterification reaction conditions were 1 % of catalyst to ACPO, with a molar ratio of methanol to ACPO of 8: 1, a stirring speed of 300 min−1, for 30 min and at 60°C. Under these conditions, the FFA content was reduced from 18 mg g−1 to less than 1 mg g−1 and with a yield of 96 %. The biodiesel produced met the EN14214 standard specifications. MSA was recycled for three times without losing its activity. The biodiesel produced in a two-stage process has a low acid value (0.14 mg g−1).


2018 ◽  
Vol 7 (1) ◽  
pp. 59-63
Author(s):  
Prima Astuti Handayani ◽  
Ria Wulansarie ◽  
Paisal Husaen ◽  
Isna Mardya Ulfayanti

Nyamplung (Calophyllum inophyllum) oil contains high free fatty acid (FFA) that is 21.62%. Nyamplung oil can be utilized as raw material for biodiesel production. Microwave is a method of heating that is used intensively to speed up the production process. Ionic liquid has high catalytic activity, high selectivity, can be recycled and environmentally friendly. This study learned about the esterification of nyamplung oil with ionic liquid 1-Butyl-3-methylimidazolium hydrogen sulphate (BMIMHSO4) as catalyst and microwave-assisted. The purpose of this study is to obtain optimum condition of esterification process, with free fatty acid concentration (FFA) <2%. This study uses raw materials of nyamplung oil, methanol and BMIMHSO4 as catalyst. Equipment used in study was batch reactor equipped with temperature sensor with microwave heating system. The research variables studied were reaction temperature (50-70oC), molar ratio oil to methanol (1:30-1:60) and catalyst concentration (5-17.5%). The result of esterification reaction was analyzed by FFA (free fatty acid) content using titration analysis. The best free fatty acid (FFA) result was 1.92%, with molar ratio of oil to methanol was 1:40, catalyst concentration was 15% by weight and at 60oC for 120 min. The esterification of  nyamplung oil meets the criteria as biodiesel feedstock.


2012 ◽  
pp. 23-32
Author(s):  
Norzita Ngadi ◽  
Hajar Alias ◽  
Siti Aktar Ishak

In this study, production of biodiesel from new and used palm and soybean oils was carried out using a transesterification method. The effect of catalyst amount used towards the percentage yield, soap content and heat of combustion of the biodiesel produced was investigated. The soap content and heat combustion of the biodiesel were determined using titration (AOCS Cc-95) and heat calorimeter bomb (ASTM D240-09), respectively. The results showed that catalyst concentration of 0.5 w/w% gave the best result in terms of yield of biodiesel produced from both palm and soybean oils. However, the quality of biodiesel (i.e. soap content and heat of combustion) produced from palm and soybean oils behaved differently towards catalyst concentration. Overall, both oils (palm and soybean), either new or used oil apparently showed no significant difference in term of yield or qualities of biodiesel produced. This indicates that the used oil has high potential as an economical and practical future source of biodiesel.


2011 ◽  
Vol 396-398 ◽  
pp. 2411-2415 ◽  
Author(s):  
Ping Lan ◽  
Li Hong Lan ◽  
Tao Xie ◽  
An Ping Liao

Isoamyl acetate was synthesized from isoamylol and glacial acetic acid with strong acidic cation exchanger as catalyst. The effects of reaction conditions such as acid-alcohol ratio, reaction time, catalyst dosage to esterification reaction have been investigated and the optimum reaction conditions can be concluded as: the molar ratio of acetic acid to isoamylol 0.8:1, reaction time 2h, 25 % of catalyst (quality of acetic acid as benchmark). The conversion rate can reach up to 75.46%. The catalytic ability didn’t reduce significantly after reusing 10 times and the results showed that the catalyst exhibited preferably catalytic activity and reusability.


2015 ◽  
Vol 4 (4) ◽  
Author(s):  
Seyed Mohammad Safieddin Ardebili ◽  
Teymor Tavakoli Hashjin ◽  
Barat Ghobadian ◽  
Gholamhasan Najafi ◽  
Stefano Mantegna ◽  
...  

AbstractThis work investigates the effect of simultaneous ultrasound-microwave irradiation on palm oil transesterification and uncovers optimal operating conditions. Response surface methodology (RSM) has been used to analyze the influence of reaction conditions, including methanol/palm oil molar ratio, catalyst concentration, reaction temperature and irradiation time on biodiesel yield. RSM analyses indicate 136 s and 129 s as the optimal sonication and microwave irradiation times, respectively. Optimized parameters for full conversion (97.53%) are 1.09% catalyst concentration and a 7:3.1 methanol/oil molar ratio at 58.4°C. Simultaneous ultrasound-microwave irradiation dramatically accelerates the palm oil transesterification reaction. Pure biodiesel was obtained after only 2.2 min while the conventional method requires about 1 h.


Sign in / Sign up

Export Citation Format

Share Document