Cocultivating aerobic heterotrophs and purple bacteria for microbial protein in sequential photo- and chemotrophic reactors

2021 ◽  
Vol 319 ◽  
pp. 124192
Author(s):  
Abbas Alloul ◽  
Maarten Muys ◽  
Nick Hertoghs ◽  
Frederiek-Maarten Kerckhof ◽  
Siegfried E. Vlaeminck
Author(s):  
Abbas Alloul ◽  
Marta Cerruti ◽  
Damian Adamczyk ◽  
David G. Weissbrodt ◽  
Siegfried E. Vlaeminck

Author(s):  
Abbas Alloul ◽  
Marta Cerruti ◽  
Damian Adamczyk ◽  
David G. Weissbrodt ◽  
Siegfried E. Vlaeminck

AbstractPurple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e. uneven community with high abundance of one species) when grown anaerobically in the light. However, the cost of a closed anaerobic photobioreactor (PBR) is prohibitive for protein production. While open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed tools to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids as carbon source. For oxygen availability as tool, not stirring in the night (i.e. reduced oxygen supply) elevated the PNSB abundance from 8% to 20%. For light availability as tool, a 24-h illumination increased the PNSB abundance from 8% to 31% compared to a 12-h light/12-h dark regime. A reactor run at 2-d sludge retention time at the highest surface-to-volume ratio (10 m2 m-3 increased light availability) showed productivities up to 0.2 g protein L-1 d-1 and the highest PNSB abundance (78%). The estimated production cost is €1.9 kg-1 dry weight (vs. PBR €11.4 kg-1 dry weight). This study pioneered in PNSB-based microbial protein production in raceways, yielding cost efficiency along with high selectivity when avoiding the combined availability of oxygen, COD and darkness.Graphical abstract


2008 ◽  
Vol 7 (2) ◽  
pp. 225-227
Author(s):  
Rei Tsuji ◽  
Yoshinori Shinohara ◽  
Hatsumi Nagadome ◽  
Yoshihiro Terada

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 395-395
Author(s):  
Paul Tamayao ◽  
Gabriel O Ribeiro ◽  
Tim A McAllister ◽  
Hee-Eun Yang ◽  
A M Saleem ◽  
...  

Abstract This study investigated the effects of post-pyrolysis treated biochar on nutrient disappearance, total gas and methane (CH4) production, rumen fermentation and microbial protein synthesis in an artificial rumen system (RUSITEC) fed a barley silage-based diet. The basal diet consisted of 60% barley silage, 27% barley grain, 10% canola meal and 3% mineral/vitamin supplement (DM basis). Three spruced-based biochars, treated post-pyrolysis with either zinc chloride, hydrochloric acid/nitric acid mixture or sulfuric acid were added at 2.0% of substrate DM. In a randomized complete block design, treatments were assigned to sixteen vessels (n = 4/treatment) in two RUSITEC systems. The experiment was conducted over 15 d, with 8 d of adaptation and 7 d of sampling. Nutrient disappearance of dry matter (DM), organic matter (OM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) was determined after 48 h of incubation from d 9 to 12, and microbial protein synthesis was measured from d 13–15. Data were analyzed using PROC MIXED in SAS, with the fixed effect of treatment and random effect of RUSITEC system and vessel. Biochar inclusion did not affect disappearance of DM (P = 0.49), OM (P = 0.60), CP (P = 0.14), NDF (P = 0.48), ADF (P = 0.11) or starch (P = 0.58). Biochar also had no effect on total gas production (P = 0.31) or CH4 produced expressed as a % of total gas production (P = 0.06), mg/d (P = 0.70), mg/g of DM incubated (P = 0.74), or mg/g of DM digested (P = 0.64). No effect on total VFA (P = 0.56) or NH3-N (P = 0.20) production were observed. Neither microbial protein synthesis nor total protozoa count were affected by biochar addition (P > 0.05). In conclusion, biochar inclusion in a silage-based diet did not exhibit the potential to mitigate CH4 emissions or improve digestion in a RUSITEC system.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Ran ◽  
Long Jin ◽  
Ranithri Abeynayake ◽  
Atef Mohamed Saleem ◽  
Xiumin Zhang ◽  
...  

Abstract Background Brewers’ spent grain (BSG) typically contains 20% – 29% crude protein (CP) with high concentrations of glutamine, proline and hydrophobic and non-polar amino acid, making it an ideal material for producing value-added products like bioactive peptides which have antioxidant properties. For this study, protein was extracted from BSG, hydrolyzed with 1% alcalase and flavourzyme, with the generated protein hydrolysates (AlcH and FlaH) showing antioxidant activities. This study evaluated the effects of AlcH and FlaH on gas production, ruminal fermentation characteristics, nutrient disappearance, microbial protein synthesis and microbial community using an artificial rumen system (RUSITEC) fed a high-grain diet. Results As compared to the control of grain only, supplementation of FlaH decreased (P < 0.01) disappearances of dry matter (DM), organic matter (OM), CP and starch, without affecting fibre disappearances; while AlcH had no effect on nutrient disappearance. Neither AlcH nor FlaH affected gas production or VFA profiles, however they increased (P < 0.01) NH3-N and decreased (P < 0.01) H2 production. Supplementation of FlaH decreased (P < 0.01) the percentage of CH4 in total gas and dissolved-CH4 (dCH4) in dissolved gas. Addition of monensin reduced (P < 0.01) disappearance of nutrients, improved fermentation efficiency and reduced CH4 and H2 emissions. Total microbial nitrogen production was decreased (P < 0.05) but the proportion of feed particle associated (FPA) bacteria was increased with FlaH and monensin supplementation. Numbers of OTUs and Shannon diversity indices of FPA microbial community were unaffected by AlcH and FlaH; whereas both indices were reduced (P < 0.05) by monensin. Taxonomic analysis revealed no effect of AlcH and FlaH on the relative abundance (RA) of bacteria at phylum level, whereas monensin reduced (P < 0.05) the RA of Firmicutes and Bacteroidetes and enhanced Proteobacteria. Supplementation of FlaH enhanced (P < 0.05) the RA of genus Prevotella, reduced Selenomonas, Shuttleworthia, Bifidobacterium and Dialister as compared to control; monensin reduced (P < 0.05) RA of genus Prevotella but enhaced Succinivibrio. Conclusions The supplementation of FlaH in high-grain diets may potentially protect CP and starch from ruminal degradation, without adversely affecting fibre degradation and VFA profiles. It also showed promising effects on reducing CH4 production by suppressing H2 production. Protein enzymatic hydrolysates from BSG using flavourzyme showed potential application to high value-added bio-products.


1998 ◽  
Vol 22 ◽  
pp. 306-308
Author(s):  
M. D. Carro ◽  
E. L. Miller

The estimation of rumen microbial protein synthesis is one of the main points in the nitrogen (N)-rationing systems for ruminants, as microbial protein provides proportionately 0.4 to 0.9 of amino acids entering the small intestine in ruminants receiving conventional diets (Russell et al., 1992). Methods of estimating microbial protein synthesis rely on marker techniques in which a particular microbial constituent is related to the microbial N content. Marker : N values have generally been established in mixed bacteria isolated from the liquid fraction of rumen digesta and it has been assumed that the same relationship holds in the total population leaving the rumen (Merry and McAllan, 1983). However, several studies have demonstrated differences in composition between solid-associated (SAB) and fluid-associated bacteria in vivo (Legay-Carmier and Bauchart, 1989) and in vitro (Molina Alcaide et al, 1996), as well in marker : N values (Pérez et al., 1996). This problem could be more pronounced in the in vitro semi-continuous culture system RUSITEC, in which there are three well defined components (a free liquid phase, a liquid phase associated with the solid phase and a solid phase), each one having associated microbial populations.The objective of this experiment was to investigate the effect of using different bacterial isolates (BI) on the estimation of microbial production of four different diets in RUSITEC (Czerkawski and Breckenridge, 1977), using (15NH4)2 SO4 as microbial marker, and to assess what effects any differences would have on the comparison of microbial protein synthesis between diets.This study was conducted in conjunction with an in vitro experiment described by Carro and Miller (1997). Two 14-day incubation trials were carried out with the rumen simulation technique RUSITEC (Czerkawski and Breckenridge, 1977). The general incubation procedure was the one described by Czerkawski and Breckenridge (1977) and more details about the procedures of this experiment are given elsewhere (Carro and Miller, 1997).


2019 ◽  
Vol 10 (42) ◽  
pp. 9650-9662 ◽  
Author(s):  
Felipe Cardoso Ramos ◽  
Michele Nottoli ◽  
Lorenzo Cupellini ◽  
Benedetta Mennucci

The spectral tuning of LH2 antenna complexes arises from H-bonding, acetyl torsion, and inter-chromophore couplings.


2017 ◽  
Vol 95 (2) ◽  
pp. 884-891 ◽  
Author(s):  
G. V. Kozloski ◽  
C. M. Stefanello ◽  
L. Oliveira ◽  
H. M. N. Ribeiro Filho ◽  
T. J. Klopfenstein

Sign in / Sign up

Export Citation Format

Share Document