Single-phase and two-phase cultivations using different light regimes to improve production of valuable substances in the anoxygenic photosynthetic bacterium Rhodopseudomonas faecalis PA2

2021 ◽  
Vol 328 ◽  
pp. 124855
Author(s):  
Chewapat Saejung ◽  
Thanyaporn Chanthakhot
Author(s):  
G. Mackiewicz Ludtka

Historically, metals exhibit superplasticity only while forming in a two-phase field because a two-phase microstructure helps ensure a fine, stable grain size. In the U-5.8 Nb alloy, superplastici ty exists for up to 2 h in the single phase field (γ1) at 670°C. This is above the equilibrium monotectoid temperature of 647°C. Utilizing dilatometry, the superplastic (SP) U-5.8 Nb alloy requires superheating to 658°C to initiate the α+γ2 → γ1 transformation at a heating rate of 1.5°C/s. Hence, the U-5.8 Nb alloy exhibits an anomolous superplastic behavior.


2013 ◽  
Vol 35 (3) ◽  
Author(s):  
Tat Thang Nguyen ◽  
Hiroshige Kikura ◽  
Ngoc Hai Duong ◽  
Hideki Murakawa ◽  
Nobuyoshi Tsuzuki

Ultrasonic Velocity Profile (UVP) method for measurement of single-phase and two-phase flow in a vertical pipe has recently been developed in the Laboratory for industrial and Environmental Fluid Dynamics, Institute of Mechanics, VAST. The signal processings of the UVP method include the ultrasonic pulse Doppler method (UDM)and the ultrasonic time-domain cross-correlation (UTDC) method. For two-phase flow, simultaneous measurements of both liquid and gas are enabled by using a multi-wave ultrasonic transducer (multi-wave TDX). The multi-wave TDX is able to emit and receive ultrasound of two different center frequencies of 2 MHz and 8 MHz at the same time and position. 2 MHz frequency with beam diameter 10 mm is exploited for measurement of gas. 8 MHz one with beam diameter 3 mm is used for liquid. Measurements have been carried out for laminar and turbulent single-phase flows and bubbly counter-current two-phase flows in two flow loops using two vertical pipes of 26 mm inner diameter (I.D.) and 50 mm I.D. respectively. Based on the measured results, assessment of each method is clarified. Applicability of each method for different conditions of pipe flow has been tested. Suggestions for application of the two methods have been recommended.


1991 ◽  
Vol 24 (7) ◽  
pp. 59-64 ◽  
Author(s):  
R. W. Szetela

Steady-state models are presented to describe the wastewater treatment process in two activated sludge systems. One of these makes use of a single complete-mix reactor; the other one involves two complete-mix reactors arranged in series. The in-series system is equivalent to what is known as the “two-phase” activated sludge, a concept which is now being launched throughout Poland in conjunction with the PROMLECZ technology under implementation. Analysis of the mathematical models has revealed the following: (1) treatment efficiency, excess sludge production, energy consumption, and the degree of sludge stabilization are identical in the two systems; (2) there exists a technological equivalence of “two-phase” sludge with “single-phase” sludge; (3) the “two-phase” system has no technological advantage over the “single-phase” system.


1967 ◽  
Vol 89 (4) ◽  
pp. 577-586 ◽  
Author(s):  
P. Cooper

A model is developed for analytically determining pump inducer performance in both the single-phase and cavitating flow regimes. An equation of state for vaporizing flow is used in an approximate, three-dimensional analysis of the flow field. The method accounts for losses and yields internal distributions of fluid pressure, velocity, and density together with the resulting overall efficiency and pressure rise. The results of calculated performance of two sample inducers are presented. Comparison with recent theory for fluid thermal effects on suction head requirements is made with the aid of a resulting dimensionless vaporization parameter.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Yoon Jo Kim ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov ◽  
Young-Joon Lee ◽  
Sung-Kyu Lim

It is now widely recognized that the three-dimensional (3D) system integration is a key enabling technology to achieve the performance needs of future microprocessor integrated circuits (ICs). To provide modular thermal management in 3D-stacked ICs, the interlayer microfluidic cooling scheme is adopted and analyzed in this study focusing on a single cooling layer performance. The effects of cooling mode (single-phase versus phase-change) and stack/layer geometry on thermal management performance are quantitatively analyzed, and implications on the through-silicon-via scaling and electrical interconnect congestion are discussed. Also, the thermal and hydraulic performance of several two-phase refrigerants is discussed in comparison with single-phase cooling. The results show that the large internal pressure and the pumping pressure drop are significant limiting factors, along with significant mass flow rate maldistribution due to the presence of hot-spots. Nevertheless, two-phase cooling using R123 and R245ca refrigerants yields superior performance to single-phase cooling for the hot-spot fluxes approaching ∼300 W/cm2. In general, a hybrid cooling scheme with a dedicated approach to the hot-spot thermal management should greatly improve the two-phase cooling system performance and reliability by enabling a cooling-load-matched thermal design and by suppressing the mass flow rate maldistribution within the cooling layer.


2014 ◽  
Vol 986-987 ◽  
pp. 330-333
Author(s):  
Ding Jun Wen ◽  
Xiu Bin Zhang ◽  
Hong Gang Chen ◽  
Feng Jiang ◽  
Ya Ming Sun

The overvoltage calculation of 750kV transmission line with series compensation has great significance on the design, insulation coordination and protection of the line. In this paper, a transient model of 750kV power transmission system with series compensation is established. Effects of different capacity on no-load capacitive rise overvoltage, single-phase grounding overvoltage, two-phase grounding overvoltage are calculated. Secondary arc current and recovery voltage of different series compensation capacity in single-phase grounding is also calculated.


The present paper describes an investigation of diffusion in the solid state. Previous experimental work has been confined to the case in which the free energy of a mixture is a minimum for the single-phase state, and diffusion decreases local differences of concentration. This may be called ‘diffusion downhill’. However, it is possible for the free energy to be a minimum for the two-phase state; diffusion may then increase differences of concentration; and so may be called ‘diffusion uphill’. Becker (1937) has proposed a simple theoretical treatment of these two types of diffusion in a binary alloy. The present paper describes an experimental test of this theory, using the unusual properties of the alloy Cu 4 FeNi 3 . This alloy is single phase above 800° C and two-phase at lower temperatures, both the phases being face-centred cubic; the essential difference between the two phases is their content of copper. On dissociating from one phase into two the alloy develops a series of intermediate structures showing striking X-ray patterns which are very sensitive to changes of structure. It was found possible to utilize these results for a quantitative study of diffusion ‘uphill’ and ‘downhill’ in the alloy. The experimental results, which can be expressed very simply, are in fair agreement with conclusions drawn from Becker’s theory. It was found that Fick’s equation, dc / dt = D d2c / dx2 , can, within the limits of error, be applied in all cases, with the modification that c denotes the difference of the measured copper concentration from its equilibrium value. The theory postulates that D is the product of two factors, of which one is D 0f the coefficient of diffusion that would be measured if the alloy were an ideal solid solution. The theory is able to calculate D/D 0 , if only in first approximation, and the experiments confirm this calculation. It was found that in most cases the speed of diffusion—‘uphill’ or ‘downhill’—has the order of magnitude of D 0 . * Now with British Electrical Research Association.


Sign in / Sign up

Export Citation Format

Share Document