An effective strategy for improving the specific activity and saccharification efficiency of cellulase by pre-incubation with phenolic acids

2021 ◽  
pp. 126644
Author(s):  
Qiuping Ran ◽  
Huanan Li ◽  
Jiashu Liu ◽  
Mengtian Huang ◽  
Ying Zhou ◽  
...  
Author(s):  
Xiaoli Zhou ◽  
Zhiqiang Xu ◽  
Yueqiu Li ◽  
Jia He ◽  
Honghui Zhu

Lytic polysaccharide monooxygenases (LPMOs) oxidatively break down the glycosidic bonds of crystalline polysaccharides, significantly improving the saccharification efficiency of recalcitrant biomass, and have broad application prospects in industry. To meet the needs of industrial applications, enzyme engineering is needed to improve the catalytic performance of LPMOs such as enzyme activity and stability. In this study, we engineered the chitin-active CjLPMO10A from Cellvibrio japonicus through a rational disulfide bonds design. Compared with the wild-type, the variant M1 (N78C/H116C) exhibited a 3-fold increase in half-life at 60°C, a 3.5°C higher T5015, and a 7°C rise in the apparent Tm. Furthermore, the resistance of M1 to chemical denaturation was significantly improved. Most importantly, the introduction of the disulfide bond improved the thermal and chemical stability of the enzyme without causing damage to catalytic activity, and M1 showed 1.5 times the specific activity of the wild-type. Our study shows that the stability and activity of LPMOs could be improved simultaneously by selecting suitable engineering sites reasonably, thereby improving the industrial adaptability of the enzymes, which is of great significance for applications.


1979 ◽  
Vol 181 (1) ◽  
pp. 143-151 ◽  
Author(s):  
C Shama Bhat ◽  
T Ramasarma

1. Mevalonate pyrophosphate decarboxylase of rat liver is inhibited by various phenyl and phenolic acids. 2. Some of the phenyl and phenolic acids also inhibited mevalonate phosphate kinase. 3. Compounds with the phenyl-vinyl structure were more effective. 4. Kinetic studies showed that some of the phenolic acids compete with the substrates, mevalonate 5-phosphate and mevalonate 5-pyrophosphate, whereas others inhibit umcompetitively. 5. Dihydroxyphenyl and trihydroxyphenyl compounds and p-chlorophenoxyisobutyrate, a hypocholesterolaemic drug, had no effect on these enzymes. 6. Of the three mevalonate-metabolizing enzymes, mevalonate pyrophosphate decarboxylase has the lowest specific activity and is probably the rate-determining step in this part of the pathway.


2020 ◽  
Vol 27 (3) ◽  
pp. 187-192 ◽  
Author(s):  
Songül Bayrak ◽  
Cansu Öztürk ◽  
Yeliz Demir ◽  
Zuhal Alım ◽  
Ömer İrfan Küfrevioglu

Background: Polyphenol Oxidase (PPO) belongs to the oxidoreductase enzyme family. Methods: Here, PPO was purified from potato using Sepharose 4B-L-tyrosine-p-aminobenzoic acid affinity chromatography. It determined the interactions between some phenolic acids and the enzyme. Results: The enzyme was obtained with a specific activity of 15333.33 EU/mg protein and 7.87- fold purification. It was found that phenolic acids exhibited inhibitory properties for PPO. The IC50 values of the phenolic acids were found in the range of 0.36-2.12 mM, and their Ki values were found in the range of 0.28± 0.07-1.72±0.32 mM. It was determined that all studied compounds displayed a competitive inhibition effect. Among these compounds, 3-hydroxybenzoic acid was found to be the most effective PPO inhibitor (Ki: 0.28±0.07 mM). Conclusion: Investigating the inhibition kinetics of the enzyme will simplify the testing of PPO inhibitor candidates.


Antioxidants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 984
Author(s):  
Sara Bautista-Expósito ◽  
Irene Tomé-Sánchez ◽  
Ana Belén Martín-Diana ◽  
Juana Frias ◽  
Elena Peñas ◽  
...  

Valorization of wheat bran (WB) into new high-value products is of great interest within the framework of sustainability and circular economy. In the present study, we utilized a multi-step approach to extract nutraceutical compounds (phenolic acids) from WB and improved its antioxidant and anti-inflammatory properties through using sequential hydrothermal and enzymatic hydrolysis. Thirteen commercial glycosidases differing in their specific activity were screened and compared for hydrolytic efficiency to release monosaccharides, ferulic acid, and diferulic acid. Ultraflo XL was selected as the desired enzyme treatment on the basis of its higher WB solubilization, as well as its monosaccharide and phenolic acids yields. The relationships between better hydrolytic performance of Ultraflo XL and its particular activity profile were established. To determine the optimum conditions for Ultraflo XL treatment, we tested different factors (solvent pH, incubation temperature, and time) under 15 experiments. A multicomponent analysis (MCA), including central composite design, model fitness, regression coefficients, analysis of variance, 3D response curves, and desirability, was used for processing optimization. A beneficial effect of autoclave treatment on the release of phenolic compounds was also evidenced. The results of MCA showed involvement of linear, quadratic, and interactive effects of processing factors, although solvent pH was the main determinant factor, affecting enzymatic extraction of phenolics and bioactivity of hydrolysates. As compared to control WB, under optimized conditions (47 °C, pH = 4.4, and 20.8 h), WB hydrolysates showed 4.2, 1.5, 2, and 3 times higher content of ferulic acid (FA) and capacity to scavenge oxygen radicals, chelate transition metals, and inhibit monocyte chemoattractant protein-1 secretion in macrophages, respectively. These approaches could be applied for the sustainable utilization of WB, harnessing its nutraceutical potential.


Author(s):  
Aline Byrnes ◽  
Elsa E. Ramos ◽  
Minoru Suzuki ◽  
E.D. Mayfield

Renal hypertrophy was induced in 100 g male rats by the injection of 250 mg folic acid (FA) dissolved in 0.3 M NaHCO3/kg body weight (i.v.). Preliminary studies of the biochemical alterations in ribonucleic acid (RNA) metabolism of the renal tissue have been reported recently (1). They are: RNA content and concentration, orotic acid-c14 incorporation into RNA and acid soluble nucleotide pool, intracellular localization of the newly synthesized RNA, and the specific activity of enzymes of the de novo pyrimidine biosynthesis pathway. The present report describes the light and electron microscopic observations in these animals. For light microscopy, kidney slices were fixed in formalin, embedded, sectioned, and stained with H & E and PAS.


2021 ◽  
Author(s):  
Manuela Oliverio ◽  
Monica Nardi ◽  
Maria Luisa Di Gioia ◽  
Paola Costanzo ◽  
Sonia Bonacci ◽  
...  

Semi-synthesis is an effective strategy to obtain both natural and synthetic analogues of the olive secoiridoids, starting from easy accessible natural compounds.


Nanoscale ◽  
2020 ◽  
Vol 12 (30) ◽  
pp. 16136-16142
Author(s):  
Xuan Wang ◽  
Ming-Jie Dong ◽  
Chuan-De Wu

An effective strategy to incorporate accessible metalloporphyrin photoactive sites into 2D COFs by establishing a 3D local connection for highly efficient photocatalysis was developed.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
S Huseinovic ◽  
M Salihovic ◽  
A Topcagic ◽  
K Kalcher ◽  
S Cavar ◽  
...  

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
I Tahirovic ◽  
Z Rimpapa ◽  
S Cavar ◽  
S Huseinovic ◽  
S Muradic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document