scholarly journals Probability of change in life: Amino acid changes in single nucleotide substitutions

Biosystems ◽  
2020 ◽  
Vol 193-194 ◽  
pp. 104135 ◽  
Author(s):  
Kwok-Fong Chan ◽  
Stelios Koukouravas ◽  
Joshua Yi Yeo ◽  
Darius Wen-Shuo Koh ◽  
Samuel Ken-En Gan
Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2454
Author(s):  
Marta Budziszewska ◽  
Przemysław Wieczorek

Tomato torrado virus (ToTV) induces severe systemic necrosis in Solanum lycopersicum. This work aimed at describing the genetic variability of necrosis-inducing ToTV-Wal’17 collected in 2017, derived from the ToTV-Wal’03 after long-term passages in plants. Sequence analyses of the ToTV-Wal’17 indicated twenty-eight single nucleotide substitutions in coding sequence of both RNAs, twelve of which resulted in amino acid changes in viral polyproteins. Moreover the sequencing data revealed that the 3’UTR of ToTV-Wal’17 RNA1 was 394 nts shorter in comparison to Wal’03. The performed sequence analyses revealed that 3’UTR of RNA1 of ToTV-Wal’17 is the most divergent across all previously described European isolates.


2006 ◽  
Vol 19 (5) ◽  
pp. 557-563 ◽  
Author(s):  
Valérie Ayme ◽  
Sylvie Souche ◽  
Carole Caranta ◽  
Mireille Jacquemond ◽  
Joël Chadœuf ◽  
...  

Five different amino acid substitutions in the VPg of Potato virus Y were shown to be independently responsible for virulence toward pvr23 resistance gene of pepper. A consequence of these multiple mutations toward virulence involving single nucleotide substitutions is a particularly high frequency of resistance breaking (37% of inoculated plants from the first inoculation) and suggests a potentially low durability of pvr23 resistance. These five mutants were observed with significantly different frequencies, one of them being overrepresented. Genetic drift alone could not explain the observed distribution of virulent mutants. More plausible scenarios were obtained by taking into account either the relative substitution rates, the relative fitness of the mutants in pvr23 pepper plants, or both.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 996-996
Author(s):  
Marvyn T. Koning ◽  
Julieta Haydee Sepulveda Yanez ◽  
Diego Alvarez-Saravia ◽  
Bas Pilzecker ◽  
Pauline Van Schouwenburg ◽  
...  

Abstract Upon antigen recognition, activation-induced cytosine deaminase initiates affinity maturation of the B-cell receptor by somatic hypermutation (SHM) through error-prone DNA repair pathways. SHM typically creates single nucleotide substitutions, but tandem substitutions may also occur. While tandem substitutions have been described in mice and other species, the incidence of this phenomenon and its underlying mechanism in humans is currently unknown. We investigated incidence and sequence context of tandem substitutions by massive parallel sequencing of V(D)J repertoires in healthy human donors generated by unbiased ARTISAN PCR. Selection of unique, clonally unrelated, antigen-experienced sequences carrying up to 5% mutations yielded 13.532 VDJ, 7.952 VJ-kappa and 7.598 VJ-lambda. Comparison to the closest germline allele allowed for identification of a total of 122.878 single nucleotide substitutions (SNS), 10.735 tandem dinucleotide substitutions (TDNS) and 2.615 longer contiguous substitutions. After correcting for expected clusters of adjacent SNS, tandem substitutions comprised 5,7% of all AID-induced mutations. The mutation of more than one nucleotide in a single event, was shown to overcome amino acid codon redundancy and may therefore enhance the adaptive immune response. Clustering of such mutations around AID hotspots and their overall distribution indicates that tandem substitutions are an integral part of the SHM spectrum. In the majority of tandem substitutions, the mutated sequence may be identified in the directly adjacent reference sequence context. Tandem substitutions in humans therefore represent single nucleotide juxtalocations. Such juxtalocations appear to be favored in polydipyramidine stretches. These observations could be confirmed in patients with MSH2/6 deficiency, but were absent in a VDJ library from an UNG-deficient patient, indicating a strict dependence on abasic sites as an instigating mechanism. Together, these findings delineate a model where tandem substitutions are predominantly generated by translesion synthesis across an apyramidinic site that is typically created by UNG. During replication, apyrimidinic sites transiently adapt an extruded configuration, causing skipping of the extruded base. Consequent strand decontraction leads to the juxtalocation, after which exonucleases repair the apyramidinic site and any directly adjacent mismatched base pairs. The mismatch repair pathway appears to account for the remainder of tandem substitutions. Our study shows that a significant portion of mutations acquired during SHM are caused by tandem substitutions, and that this mechanism may enhance affinity maturation and expedite the adaptive immune response by overcoming amino acid codon degeneracies or mutating two adjacent amino acid residues simultaneously. Figure legend. Corrected incidence of tandem dinucleotide substitutions in healthy donors. (A) Dinucleotide substitutions from unique IGHV, IGKV and IGLV sequences and corrected after in silico predictions of dinucleotide substitutions that did not occur in tandem. Burgundy cells represent sequence inversions, light and dark purple cells represent juxtalocations of the 5' and 3' base in the pair (as seen from the non-transcribed strand), respectively. For unshaded cells, juxtalocation could not be assessed due to one or more nucleotides in the reference sequence matching the mutated sequence. (B) Relative contribution of sequence inversions and juxtalocations. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2022 ◽  
Vol 12 ◽  
Author(s):  
Julieta H. Sepúlveda-Yáñez ◽  
Diego Alvarez Saravia ◽  
Bas Pilzecker ◽  
Pauline A. van Schouwenburg ◽  
Mirjam van den Burg ◽  
...  

Upon antigen recognition, activation-induced cytosine deaminase initiates affinity maturation of the B-cell receptor by somatic hypermutation (SHM) through error-prone DNA repair pathways. SHM typically creates single nucleotide substitutions, but tandem substitutions may also occur. We investigated incidence and sequence context of tandem substitutions by massive parallel sequencing of V(D)J repertoires in healthy human donors. Mutation patterns were congruent with SHM-derived single nucleotide mutations, delineating initiation of the tandem substitution by AID. Tandem substitutions comprised 5,7% of AID-induced mutations. The majority of tandem substitutions represents single nucleotide juxtalocations of directly adjacent sequences. These observations were confirmed in an independent cohort of healthy donors. We propose a model where tandem substitutions are predominantly generated by translesion synthesis across an apyramidinic site that is typically created by UNG. During replication, apyrimidinic sites transiently adapt an extruded configuration, causing skipping of the extruded base. Consequent strand decontraction leads to the juxtalocation, after which exonucleases repair the apyramidinic site and any directly adjacent mismatched base pairs. The mismatch repair pathway appears to account for the remainder of tandem substitutions. Tandem substitutions may enhance affinity maturation and expedite the adaptive immune response by overcoming amino acid codon degeneracies or mutating two adjacent amino acid residues simultaneously.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4221-4221
Author(s):  
Kevin R. Viel ◽  
Benjamin Kim ◽  
Maria Elizabeth Tejero ◽  
Shelley S. Cole ◽  
Tom E. Howard ◽  
...  

Abstract INTRODUCTION Mass spectrometry (MS) is a potentially useful tool for the study of the hemostasic system and its imbalances that lead to bleeding and thrombotic disorders. By harnessing the high throughput and broad scope of MS, vast data may be available to investigators and clinicians to help predict or manage hemostatic events. Although utilizing MS to evaluate coagulation proteins appears promising, amino acid (AA) substitutions resulting from genetic variation may yield a spectrum of mass-to-charge ratios (m/z) that can impede accurate protein identification. The goals of this study were to describe 1) the proteins present in a blood sample that might be involved in or otherwise affect coagulation, 2) the realm of variations that might occur with a single nucleotide substitution (SNS) in the reference coding sequences of these proteins, and 3) the variation of peptide fragments of these proteins when only one of the nucleotides is a variant. METHODS We obtained protein lists from the NCBI BioSystems database for the terms: Blood Clotting Cascade, Complement Cascade, Formation of Fibrin Clot, Hemostasis, Platelet Activation, Platelet Aggregation Plug Formation, Platelet Degranulation, Platelet Homeostasis, and Thrombin Signaling (e.g., http://www.ncbi.nlm.nih.gov/biosystems/198840). We linked the Symbol (gene) to the CCDS ID (consensus coding sequence, http://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi ). For each nucleotide, we enumerated the effect of a SNS relative to the other three nucleotides. We then generated every peptide of length 5-20, determined the change in mass based on the average, as opposed to the monoisotopic, mass of the substituted AA, and assessed whether the peptide was unique among those in the system. Finally, we determined whether possible N-linked glycosylation sites were preserved, destroyed, or created by SNS. We considered a putative site N[^P][S|T], that is N in position 1, not P in position 2, and either a S or T in position 3. RESULTS The proteins in the biosystems that were also in the CCDS database comprised 517 distinct Symbols and 951 distinct CCDS ID's, comprising 2,180,352 codons. The duplicate Symbols include transcript variants, for instance, the Symbol F8 linked to CCDS ID's 35457.1 and 44026.1, thereby diminishing the uniqueness of the peptides (transcript variants share some, if not most, of the reading frames). All of the codons were susceptible to an AA substitution; at least one variant nucleotide substation in position 1 or 2 of the codon always resulted in an AA substitution. SNS caused premature termination signals (stop codons) in 240,100 of these codons. Table 1 details the variations. A map of the N-glycosylation sites is available for each protein, although this may not affect MS directly. Of the 83,510 potential N-Linked Glycosylation sites, a SNS disrupted the putative AA sequence in 53,067 (64%). A SNS created a novel potential N-Linked Glycosylation site at 52,787 loci. Table 1. Wild-type Only Wild-type and Variants Peptide Length Peptides Distinct Peptides Peptides Distinct Peptides Relative Change in Mass 5 722,174 292,485 24,470,567 2,464,873 0.052250 10 717,564 350,570 47,911,535 20,982,641 0.025968 15 712,954 355,446 71,052,562 31,777,153 0.017273 20 708,344 357,177 93,893,423 42,465,377 0.012939 CONCLUSIONS Variant peptides due to a single SNS per peptide greatly outnumber wild-type peptides. The ability to identify a protein based on uniqueness of one of its peptides increases as the peptide size increases, but AA variations in those peptides that arise from one SNS will require 1) increased mass resolution and 2) both a search algorithm and database that accounts for the possible variations. Patients with hemostatic or thrombotic disorders may be more likely to have a variant, and these results highlight the need to know the genetic sequence associated with proteins being analyzes by MS if this technology is to be adopted for research and clinical purposes. The inclusion of currently identified SNPs and the effect of INDELs that preserve the reading frame is ongoing. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Frida Belinky ◽  
Itamar Sela ◽  
Igor B. Rogozin ◽  
Eugene V. Koonin

AbstractSingle nucleotide substitutions in protein-coding genes can be divided into synonymous (S), with little fitness effect, and non-synonymous (N) ones that alter amino acids and thus generally have a greater effect. Most of the N substitutions are affected by purifying selection that eliminates them from evolving populations. However, additional mutations of nearby bases can modulate the deleterious effect of single substitutions and thus might be subject to positive selection. To elucidate the effects of selection on double substitutions in all codons, it is critical to differentiate selection from mutational biases. We approached this problem by comparing the fractions of double substitutions within codons to those of the equivalent double S substitutions in adjacent codons. Under the assumption that substitutions occur one at a time, all within-codon double substitutions can be represented as “ancestral-intermediate-final” sequences and can be partitioned into 4 classes: 1) SS: S intermediate – S final, 2) SN: S intermediate – N final, 3) NS: N intermediate – S final, 4) NN: N intermediate – N final. We found that the selective pressure on the second substitution markedly differs among these classes of double substitutions. Analogous to single S substitutions, SS evolve neutrally whereas, analogous to single N substitutions, SN are subject to purifying selection. In contrast, NS show positive selection on the second step because the original amino acid is recovered. The NN double substitutions are heterogeneous and can be subject to either purifying or positive selection, or evolve neutrally, depending on the amino acid similarity between the final or intermediate and the ancestral states. The general trend is that the second mutation compensates for the deleterious effect of the first one, resulting in frequent crossing of valleys on the fitness landscape.


2021 ◽  
Vol 22 (21) ◽  
pp. 11933
Author(s):  
Ivana Pibiri

Nonsense mutations are the result of single nucleotide substitutions in the DNA that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of the mRNA [...]


2021 ◽  
Author(s):  
Marta Budziszewska ◽  
Przemysław Wieczorek ◽  
Aleksandra Obrępalska-Stęplowska

Abstract Tomato torrado virus (ToTV) induces severe systemic necrosis in Solanum lycopersicum. This work aimed at describing the genetic variability of necrosis-inducing ToTV-Wal'17 collected in the 2017 year, derived from the ToTV-Wal'03 after long-term passages in plant. Sequence analyses of the ToTV-Wal`17 indicated twenty-eight single nucleotide substitutions in coding sequence of both RNAs, twelve of which resulted in amino acid changes in viral polyproteins. Moreover the sequencing data revealed that the 3'UTR of ToTV-Wal'17 RNA1 was 394 nts shorter in comparison to Wal'03. The performed sequence analyses pointed that 3'UTR of RNA1of ToTV-Wal'17 is the most divergent across all previously described European isolates.


2005 ◽  
Vol 348 (3) ◽  
pp. 513-521 ◽  
Author(s):  
Svetlana Shitivelband ◽  
Ya-Ming Hou
Keyword(s):  

2021 ◽  
Author(s):  
Jeffrey C Medley ◽  
Shilpa Hebbar ◽  
Joel T Sydzyik ◽  
Anna Y. Zinovyeva

In Caenorhabditis elegans, germline injection of Cas9 complexes is reliably used to achieve genome editing through homology-directed repair of Cas9-generated DNA breaks. To prevent Cas9 from targeting repaired DNA, additional blocking mutations are often incorporated into homologous repair templates. Cas9 can be blocked either by mutating the PAM sequence that is essential for Cas9 activity or by mutating the guide sequence that targets Cas9 to a specific genomic location. However, it is unclear how many nucleotides within the guide sequence should be mutated, since Cas9 can recognize off-target sequences that are imperfectly paired to its guide. In this study, we examined whether single-nucleotide substitutions within the guide sequence are sufficient to block Cas9 and allow for efficient genome editing. We show that a single mismatch within the guide sequence effectively blocks Cas9 and allows for recovery of edited animals. Surprisingly, we found that a low rate of edited animals can be recovered without introducing any blocking mutations, suggesting a temporal block to Cas9 activity in C. elegans. Furthermore, we show that the maternal genome of hermaphrodite animals is preferentially edited over the paternal genome. We demonstrate that maternally provided haplotypes can be selected using balancer chromosomes and propose a method of mutant isolation that greatly reduces screening efforts post-injection. Collectively, our findings expand the repertoire of genome editing strategies in C. elegans and demonstrate that extraneous blocking mutations are not required to recover edited animals when the desired mutation is located within the guide sequence.


Sign in / Sign up

Export Citation Format

Share Document