The phylogenetic distribution of the cell division system would not imply a cellular LUCA but a progenotic LUCA

Biosystems ◽  
2021 ◽  
pp. 104563
Author(s):  
Massimo Di Giulio
1999 ◽  
Vol 181 (4) ◽  
pp. 1348-1351 ◽  
Author(s):  
Yoshiaki Ohashi ◽  
Yoshie Chijiiwa ◽  
Koichiro Suzuki ◽  
Kouki Takahashi ◽  
Hideaki Nanamiya ◽  
...  

ABSTRACT 3-Methoxybenzamide (3-MBA), which is known to be an inhibitor of ADP-ribosyltransferase, inhibits cell division in Bacillus subtilis, leading to filamentation and eventually lysis of cells. Our genetic analysis of 3-MBA-resistant mutants indicated that the primary target of the drug is the cell division system involving FtsZ function during both vegetative growth and sporulation.


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Yoichi Sato ◽  
Kazuma Yasuhara ◽  
Jun-ichi Kikuchi ◽  
Thomas N. Sato

2021 ◽  
Author(s):  
Alberto Blanch Jover ◽  
Nicola De Franceschi ◽  
Daphna Fenel ◽  
Winfried Weissenhorn ◽  
Cees Dekker

AbstractThe Cdv proteins constitute the cell-division system of the Crenarchaea, in a protein machinery that is closely related to the ESCRT system of eukaryotes. The CdvB paralog CdvB1 is believed to play a major role in the constricting ring that is the central actor in cell division in the crenarchaea. Here, we present an in vitro study of purified CdvB1 from the crenarchaeon M. sedula with a combination of TEM imaging and biochemical assays. We show that CdvB1 self-assembles into filamentous polymers that are depolymerized by the action of the Vps4-homolog ATPase CdvC. Using liposome flotation assays, we show that CdvB1 binds to negatively charged lipid membranes and can be detached from the membrane by the action of CdvC. Interestingly, we find that the polymerization and the membrane binding are mutually exclusive properties of the protein. Our findings provide novel insight into one of the main components of the archaeal cell division machinery.


Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 69 ◽  
Author(s):  
Andrea Casiraghi ◽  
Lorenzo Suigo ◽  
Ermanno Valoti ◽  
Valentina Straniero

Binary fission is the most common mode of bacterial cell division and is mediated by a multiprotein complex denominated the divisome. The constriction of the Z-ring splits the mother bacterial cell into two daughter cells of the same size. The Z-ring is formed by the polymerization of FtsZ, a bacterial protein homologue of eukaryotic tubulin, and it represents the first step of bacterial cytokinesis. The high grade of conservation of FtsZ in most prokaryotic organisms and its relevance in orchestrating the whole division system make this protein a fascinating target in antibiotic research. Indeed, FtsZ inhibition results in the complete blockage of the division system and, consequently, in a bacteriostatic or a bactericidal effect. Since many papers and reviews already discussed the physiology of FtsZ and its auxiliary proteins, as well as the molecular mechanisms in which they are involved, here, we focus on the discussion of the most compelling FtsZ inhibitors, classified by their main protein binding sites and following a medicinal chemistry approach.


1991 ◽  
Vol 56 (0) ◽  
pp. 751-756 ◽  
Author(s):  
L.I. Rothfield ◽  
W.R. Cook ◽  
P.A. de Boer

Author(s):  
L. M. Lewis

The effects of colchicine on extranuclear microtubules associated with the macronucleus of Paramecium bursaria were studied to determine the possible role that these microtubules play in controlling the shape of the macronucleus. In the course of this study, the ultrastructure of the nuclear events of binary fission in control cells was also studied.During interphase in control cells, the micronucleus contains randomly distributed clumps of condensed chromatin and microtubular fragments. Throughout mitosis the nuclear envelope remains intact. During micronuclear prophase, cup-shaped microfilamentous structures appear that are filled with condensing chromatin. Microtubules are also present and are parallel to the division axis.


Author(s):  
Krishan Awtar

Exposure of cells to low sublethal but mitosis-arresting doses of vinblastine sulfate (Velban) results in the initial arrest of cells in mitosis followed by their subsequent return to an “interphase“-like stage. A large number of these cells reform their nuclear membranes and form large multimicronucleated cells, some containing as many as 25 or more micronuclei (1). Formation of large multinucleate cells is also caused by cytochalasin, by causing the fusion of daughter cells at the end of an otherwise .normal cell division (2). By the repetition of this process through subsequent cell divisions, large cells with 6 or more nuclei are formed.


Author(s):  
Ann Cleary

Microinjection of fluorescent probes into living plant cells reveals new aspects of cell structure and function. Microtubules and actin filaments are dynamic components of the cytoskeleton and are involved in cell growth, division and intracellular transport. To date, cytoskeletal probes used in microinjection studies have included rhodamine-phalloidin for labelling actin filaments and fluorescently labelled animal tubulin for incorporation into microtubules. From a recent study of Tradescantia stamen hair cells it appears that actin may have a role in defining the plane of cell division. Unlike microtubules, actin is present in the cell cortex and delimits the division site throughout mitosis. Herein, I shall describe actin, its arrangement and putative role in cell plate placement, in another material, living cells of Tradescantia leaf epidermis.The epidermis is peeled from the abaxial surface of young leaves usually without disruption to cytoplasmic streaming or cell division. The peel is stuck to the base of a well slide using 0.1% polyethylenimine and bathed in a solution of 1% mannitol +/− 1 mM probenecid.


Sign in / Sign up

Export Citation Format

Share Document