scholarly journals Alternative Mechanisms for the Interaction of the Cell-Penetrating Peptides Penetratin and the TAT Peptide with Lipid Bilayers

2009 ◽  
Vol 97 (1) ◽  
pp. 40-49 ◽  
Author(s):  
Semen Yesylevskyy ◽  
Siewert-Jan Marrink ◽  
Alan E. Mark
Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1567
Author(s):  
Tomas Venit ◽  
Moataz Dowaidar ◽  
Maxime Gestin ◽  
Syed Raza Mahmood ◽  
Ülo Langel ◽  
...  

Cell-penetrating peptides (CPPs) are short peptides that are able to efficiently penetrate cellular lipid bilayers. Although CPPs have been used as carriers in conjugation with certain cargos to target specific genes and pathways, how rationally designed CPPs per se affect global gene expression has not been investigated. Therefore, following time course treatments with 4 CPPs-penetratin, PepFect14, mtCPP1 and TP10, HeLa cells were transcriptionally profiled by RNA sequencing. Results from these analyses showed a time-dependent response to different CPPs, with specific sets of genes related to ribosome biogenesis, microtubule dynamics and long-noncoding RNAs being differentially expressed compared to untreated controls. By using an image-based high content phenotypic profiling platform we confirmed that differential gene expression in CPP-treated HeLa cells strongly correlates with changes in cellular phenotypes such as increased nucleolar size and dispersed microtubules, compatible with altered ribosome biogenesis and cell growth. Altogether these results suggest that cells respond to different cell penetrating peptides by alteration of specific sets of genes, which are possibly part of the common response to such stimulus.


2007 ◽  
Vol 35 (4) ◽  
pp. 770-774 ◽  
Author(s):  
P. Järver ◽  
K. Langel ◽  
S. El-Andaloussi ◽  
Ü. Langel

CPPs (cell-penetrating peptides) can be defined as short peptides that are able to efficiently penetrate cellular lipid bilayers. Because of this remarkable feature, they are excellent candidates regarding alterations in gene expression. CPPs have been utilized in in vivo and in vitro experiments as delivery vectors for different bioactive cargoes. This review focuses on the experiments performed in recent years where CPPs have been used as vectors for multiple effectors of gene expression such as oligonucleotides for antisense, siRNA (small interfering RNA) and decoy dsDNA (double-stranded DNA) applications, and as transfection agents for plasmid delivery.


2019 ◽  
Author(s):  
Astrid Walrant ◽  
Antonio Bauzá ◽  
Claudia Girardet ◽  
Isabel D. Alves ◽  
Sophie Lecomte ◽  
...  

AbstractCell-penetrating peptides (CPPs) internalization can occur both by endocytosis and direct translocation through the cell membrane. These different entry routes suggest that molecular partners at the plasma membrane, phospholipids or glycosaminoglycans (GAGs), bind CPPs with different affinity or selectivity. The analysis of sequence-dependent interactions of CPPs with lipids and GAGs should lead to a better understanding of the molecular mechanisms underlying their internalization. CPPs are short sequences generally containing a high number of basic arginines and lysines and sometimes aromatic residues, in particular tryptophans. Tryptophans are crucial residues in membrane-active peptides, because they are important for membrane interaction. Membrane-active peptides often present facial amphiphilicity, which also promote the interaction with lipid bilayers. To study the role of Trp and facial amphiphilicity in cell interaction and penetration of CPPs, a nonapeptide series containing only Arg, Trp or D-Trp residues at different positions was designed. Our quantitative study indicates that to maintain/increase the uptake efficiency, Arg can be advantageously replaced by Trp in the nonapeptides. The presence of Trp in oligoarginines increases the uptake in cells expressing GAGs at their surface, when it only compensates for the loss of Arg and maintains similar peptide uptake in GAG-deficient cells. In addition, we show that facial amphiphilicity is not required for efficient uptake of these nonapeptides. Thermodynamic analyses point towards a key role of Trp that highly contributes to the binding enthalpy of complexes formation. Density functional theory (DFT) analysis highlights that salt bridge-π interactions play a crucial role for the GAG-dependent entry mechanisms.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Shawn Keogan ◽  
Shendra Passic ◽  
Fred C. Krebs

Cell-penetrating peptides (CPP), which are short peptides that are capable of crossing the plasma membrane of a living cell, are under development as delivery vehicles for therapeutic agents that cannot themselves enter the cell. One well-studied CPP is the 10-amino acid peptide derived from the human immunodeficiency virus type 1 (HIV-1) Tat protein. In experiments to test the hypothesis that multiple cationic amino acids within Tat peptide confer antiviral activity against HIV-1, introduction of Tat peptide resulted in concentration-dependent inhibition of HIV-1 IIIB infection. Using Tat peptide variants containing arginine substitutions for two nonionic residues and two lysine residues, HIV-1 inhibition experiments demonstrated a direct relationship between cationic charge and antiviral potency. These studies of Tat peptide as an antiviral agent raise new questions about the role of Tat in HIV-1 replication and provide a starting point for the development of CPPs as novel HIV-1 inhibitors.


2018 ◽  
Vol 20 (7) ◽  
pp. 5180-5189 ◽  
Author(s):  
Matías A. Via ◽  
Joaquín Klug ◽  
Natalia Wilke ◽  
Luis S. Mayorga ◽  
M. G. Del Pópolo

A charge compensation mechanism, arising from the segregation of counter-ions while a cell-penetrating-peptide traverses a membrane, determines the shape and symmetry of the peptide insertion free-energy profile.


Author(s):  
Christian Mink ◽  
Erik Strandberg ◽  
Parvesh Wadhwani ◽  
Manuel N. Melo ◽  
Johannes Reichert ◽  
...  

BP100 is a short, designer-made membrane-active peptide with multiple functionalities: antimicrobial, cell-penetrating, and fusogenic. Consisting of five lysines and 6 hydrophobic residues, BP100 was shown to bind to lipid bilayers as an amphipathic α-helix, but its mechanism of action remains unclear. With these features, BP100 embodies the characteristics of two distinctly different classes of membrane-active peptides, which have been studied in detail and where the mechanism of action is better understood. On the one hand, its amphiphilic helical structure is similar to the pore forming magainin family of antimicrobial peptides, though BP100 is much too short to span the membrane. On the other hand, its length and high charge density are reminiscent of the HIV-TAT family of cell penetrating peptides, for which inverted micelles have been postulated as translocation intermediates, amongst other mechanisms. Assays were performed to test the antimicrobial and hemolytic activity, the induced leakage and fusion of lipid vesicles, and cell uptake. From these results the functional profiles of BP100, HIV-TAT, and the magainin-like peptides magainin 2, PGLa, MSI-103, and MAP were determined and compared. It is observed that the activity of BP100 resembles most closely the much longer amphipathic α-helical magainin-like peptides, with high antimicrobial activity along with considerable fusogenic and hemolytic effects. In contrast, HIV-TAT shows almost no antimicrobial, fusogenic, or hemolytic effects. We conclude that the amphipathic helix of BP100 has a similar membrane-based activity as magainin-like peptides and may have a similar mechanism of action.


RSC Advances ◽  
2016 ◽  
Vol 6 (12) ◽  
pp. 9461-9464 ◽  
Author(s):  
Xingang Guan ◽  
Chun Li ◽  
Dan Wang ◽  
Weiqi Sun ◽  
Xiaodong Gai

A protein-based nanoparticle containing cell penetrating peptides (CPPs) and enhanced green fluorescent protein (EGFP) was developed through a genetic engineering method.


Langmuir ◽  
2017 ◽  
Vol 33 (9) ◽  
pp. 2433-2443 ◽  
Author(s):  
Md. Zahidul Islam ◽  
Sabrina Sharmin ◽  
Victor Levadnyy ◽  
Sayed Ul Alam Shibly ◽  
Masahito Yamazaki

Sign in / Sign up

Export Citation Format

Share Document