The interfacial electrostatic potential modulates the insertion of cell-penetrating peptides into lipid bilayers

2018 ◽  
Vol 20 (7) ◽  
pp. 5180-5189 ◽  
Author(s):  
Matías A. Via ◽  
Joaquín Klug ◽  
Natalia Wilke ◽  
Luis S. Mayorga ◽  
M. G. Del Pópolo

A charge compensation mechanism, arising from the segregation of counter-ions while a cell-penetrating-peptide traverses a membrane, determines the shape and symmetry of the peptide insertion free-energy profile.

RSC Advances ◽  
2021 ◽  
Vol 11 (57) ◽  
pp. 36116-36124
Author(s):  
Omar Paulino da Silva Filho ◽  
Muhanad Ali ◽  
Rike Nabbefeld ◽  
Daniel Primavessy ◽  
Petra H. Bovee-Geurts ◽  
...  

Noncovalent functionalization with acylated cell-penetrating peptides achieves an efficient cellular uptake of PLGA and PEG-PLGA nanoparticles.


2008 ◽  
Vol 381 (5) ◽  
pp. 1133-1144 ◽  
Author(s):  
Yongchao Su ◽  
Rajeswari Mani ◽  
Tim Doherty ◽  
Alan J. Waring ◽  
Mei Hong

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4559 ◽  
Author(s):  
Luísa Aguiar ◽  
Arnau Biosca ◽  
Elena Lantero ◽  
Jiri Gut ◽  
Nuno Vale ◽  
...  

Recently, we disclosed primaquine cell penetrating peptide conjugates that were more potent than parent primaquine against liver stage Plasmodium parasites and non-toxic to hepatocytes. The same strategy was now applied to the blood-stage antimalarial chloroquine, using a wide set of peptides, including TP10, a cell penetrating peptide with intrinsic antiplasmodial activity. Chloroquine-TP10 conjugates displaying higher antiplasmodial activity than the parent TP10 peptide were identified, at the cost of an increased hemolytic activity, which was further confirmed for their primaquine analogues. Fluorescence microscopy and flow cytometry suggest that these drug-peptide conjugates strongly bind, and likely destroy, erythrocyte membranes. Taken together, the results herein reported put forward that coupling antimalarial aminoquinolines to cell penetrating peptides delivers hemolytic conjugates. Hence, despite their widely reported advantages as carriers for many different types of cargo, from small drugs to biomacromolecules, cell penetrating peptides seem unsuitable for safe intracellular delivery of antimalarial aminoquinolines due to hemolysis issues. This highlights the relevance of paying attention to hemolytic effects of cell penetrating peptide-drug conjugates.


2020 ◽  
Vol 8 (47) ◽  
pp. 10825-10836
Author(s):  
Carmine Pasquale Cerrato ◽  
Tove Kivijärvi ◽  
Roberta Tozzi ◽  
Tõnis Lehto ◽  
Maxime Gestin ◽  
...  

Development of a cell-penetrating peptide library to deliver biomolecules affecting mitochondria functionalities by targeting genes coding for mitochondrial proteins.


2012 ◽  
Vol 8 ◽  
pp. 1788-1797 ◽  
Author(s):  
Jan Hoyer ◽  
Ulrich Schatzschneider ◽  
Michaela Schulz-Siegmund ◽  
Ines Neundorf

Over the past 20 years, cell-penetrating peptides (CPPs) have gained tremendous interest due to their ability to deliver a variety of therapeutically active molecules that would otherwise be unable to cross the cellular membrane due to their size or hydrophilicity. Recently, we reported on the identification of a novel CPP, sC18, which is derived from the C-terminus of the 18 kDa cationic antimicrobial protein. Furthermore, we demonstrated successful application of sC18 for the delivery of functionalized cyclopentadienyl manganese tricarbonyl (cymantrene) complexes to tumor cell lines, inducing high cellular toxicity. In order to increase the potential of the organometallic complexes to kill tumor cells, we were looking for a way to enhance cellular uptake. Therefore, we designed a branched dimeric variant of sC18, (sC18)2, which was shown to have a dramatically improved capacity to internalize into various cell lines, even primary cells, using flow cytometry and fluorescence microscopy. Cell viability assays indicated increased cytotoxicity of the dimer presumably caused by membrane leakage; however, this effect turned out to be dependent on the specific cell type. Finally, we could show that conjugation of a functionalized cymantrene with (sC18)2leads to significant reduction of its IC50value in tumor cells compared to the respective sC18 conjugate, proving that dimerization is a useful method to increase the drug-delivery potential of a cell-penetrating peptide.


2019 ◽  
Vol 10 (3) ◽  
pp. 701-705 ◽  
Author(s):  
Saskia A. Bode ◽  
Suzanne B. P. E. Timmermans ◽  
Selma Eising ◽  
Sander P. W. van Gemert ◽  
Kimberly M. Bonger ◽  
...  

The cellular uptake of a cell-penetrating peptide is controlled by reconstitution of two inactive halves using bioorthogonal tetrazine ligations and is applied to a fluorescently labelled protein.


2019 ◽  
Vol 7 (4) ◽  
pp. 1493-1506 ◽  
Author(s):  
Feng Guo ◽  
Ting Ouyang ◽  
Taoxing Peng ◽  
Xiuying Zhang ◽  
Baogang Xie ◽  
...  

In this study, amphipathic chitosan derivative (ACS) and cell-penetrating peptide (CPP) co-modified colon-specific nanoparticles (CS-CPP NPs) were prepared and evaluated.


2015 ◽  
Vol 35 (2) ◽  
Author(s):  
Hua Li ◽  
Jiwen He ◽  
Huimin Yi ◽  
Guoan Xiang ◽  
Kaiyun Chen ◽  
...  

In the present study, we delivered human telomerase reverse transcriptase (hTERT) siRNA into SMMC-7721 hepatoma cells using a matrix metalloproteinase-2 (MMP2)-activatable cell-penetrating peptide (aCPP). The siRNA subsequently induced down-regulation of the hTERT gene and G1-arrest, implicating the utility of this delivery system in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document