scholarly journals Protein: Protein Interactions in Control of the Escherichia Coli Biotin Protein Ligase Functional Switch

2013 ◽  
Vol 104 (2) ◽  
pp. 660a-661a
Author(s):  
Dorothy Beckett ◽  
Poorni Adikaram
Proteomes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 16
Author(s):  
Shomeek Chowdhury ◽  
Stephen Hepper ◽  
Mudassir K. Lodi ◽  
Milton H. Saier ◽  
Peter Uetz

Glycolysis is regulated by numerous mechanisms including allosteric regulation, post-translational modification or protein-protein interactions (PPI). While glycolytic enzymes have been found to interact with hundreds of proteins, the impact of only some of these PPIs on glycolysis is well understood. Here we investigate which of these interactions may affect glycolysis in E. coli and possibly across numerous other bacteria, based on the stoichiometry of interacting protein pairs (from proteomic studies) and their conservation across bacteria. We present a list of 339 protein-protein interactions involving glycolytic enzymes but predict that ~70% of glycolytic interactors are not present in adequate amounts to have a significant impact on glycolysis. Finally, we identify a conserved but uncharacterized subset of interactions that are likely to affect glycolysis and deserve further study.


2008 ◽  
Vol 190 (18) ◽  
pp. 6048-6059 ◽  
Author(s):  
Carine Robichon ◽  
Glenn F. King ◽  
Nathan W. Goehring ◽  
Jon Beckwith

ABSTRACT Bacterial cell division is mediated by a set of proteins that assemble to form a large multiprotein complex called the divisome. Recent studies in Bacillus subtilis and Escherichia coli indicate that cell division proteins are involved in multiple cooperative binding interactions, thus presenting a technical challenge to the analysis of these interactions. We report here the use of an E. coli artificial septal targeting system for examining the interactions between the B. subtilis cell division proteins DivIB, FtsL, DivIC, and PBP 2B. This technique involves the fusion of one of the proteins (the “bait”) to ZapA, an E. coli protein targeted to mid-cell, and the fusion of a second potentially interacting partner (the “prey”) to green fluorescent protein (GFP). A positive interaction between two test proteins in E. coli leads to septal localization of the GFP fusion construct, which can be detected by fluorescence microscopy. Using this system, we present evidence for two sets of strong protein-protein interactions between B. subtilis divisomal proteins in E. coli, namely, DivIC with FtsL and DivIB with PBP 2B, that are independent of other B. subtilis cell division proteins and that do not disturb the cytokinesis process in the host cell. Our studies based on the coexpression of three or four of these B. subtilis cell division proteins suggest that interactions among these four proteins are not strong enough to allow the formation of a stable four-protein complex in E. coli in contrast to previous suggestions. Finally, our results demonstrate that E. coli artificial septal targeting is an efficient and alternative approach for detecting and characterizing stable protein-protein interactions within multiprotein complexes from other microorganisms. A salient feature of our approach is that it probably only detects the strongest interactions, thus giving an indication of whether some interactions suggested by other techniques may either be considerably weaker or due to false positives.


Microbiology ◽  
2010 ◽  
Vol 156 (10) ◽  
pp. 2920-2932 ◽  
Author(s):  
Goran Jovanovic ◽  
Christoph Engl ◽  
Antony J. Mayhew ◽  
Patricia C. Burrows ◽  
Martin Buck

The phage-shock-protein (Psp) response maintains the proton-motive force (pmf) under extracytoplasmic stress conditions that impair the inner membrane (IM) in bacterial cells. In Escherichia coli transcription of the pspABCDE and pspG genes requires activation of σ 54-RNA polymerase by the enhancer-binding protein PspF. A regulatory network comprising PspF–A–C–B–ArcB controls psp expression. One key regulatory point is the negative control of PspF imposed by its binding to PspA. It has been proposed that under stress conditions, the IM-bound sensors PspB and PspC receive and transduce the signal(s) to PspA via protein–protein interactions, resulting in the release of the PspA–PspF inhibitory complex and the consequent induction of psp. In this work we demonstrate that PspB self-associates and interacts with PspC via putative IM regions. We present evidence suggesting that PspC has two topologies and that conserved residue G48 and the putative leucine zipper motif are determinants required for PspA interaction and signal transduction upon stress. We also establish that PspC directly interacts with the effector PspG, and show that PspG self-associates. These results are discussed in the context of formation and function of the Psp regulatory complex.


2002 ◽  
Vol 184 (13) ◽  
pp. 3457-3465 ◽  
Author(s):  
Sandra W. Ramer ◽  
Gary K. Schoolnik ◽  
Cheng-Yen Wu ◽  
Jaiweon Hwang ◽  
Sarah A. Schmidt ◽  
...  

ABSTRACT Production of type IV bundle-forming pili (BFP) by enteropathogenic Escherichia coli (EPEC) requires the protein products of 12 genes of the 14-gene bfp operon. Antisera against each of these proteins were used to demonstrate that in-frame deletion of individual genes within the operon reduces the abundance of other bfp operon-encoded proteins. This result was demonstrated not to be due to downstream polar effects of the mutations but rather was taken as evidence for protein-protein interactions and their role in the stabilization of the BFP assembly complex. These data, combined with the results of cell compartment localization studies, suggest that pilus formation requires the presence of a topographically discrete assembly complex that is composed of BFP proteins in stoichiometric amounts. The assembly complex appears to consist of an inner membrane component containing three processed, pilin-like proteins, BfpI, -J, and -K, that localize with BfpE, -L, and -A (the major pilin subunit); an outer membrane, secretin-like component, BfpB and -G; and a periplasmic component composed of BfpU. Of these, only BfpL consistently localizes with both the inner and outer membranes and thus, together with BfpU, may articulate between the Bfp proteins in the inner membrane and outer membrane compartments.


2015 ◽  
Vol 370 (1679) ◽  
pp. 20150031 ◽  
Author(s):  
Alexander J. F. Egan ◽  
Jacob Biboy ◽  
Inge van't Veer ◽  
Eefjan Breukink ◽  
Waldemar Vollmer

Peptidoglycan (PG) is an essential component in the cell wall of nearly all bacteria, forming a continuous, mesh-like structure, called the sacculus, around the cytoplasmic membrane to protect the cell from bursting by its turgor. Although PG synthases, the penicillin-binding proteins (PBPs), have been studied for 70 years, useful in vitro assays for measuring their activities were established only recently, and these provided the first insights into the regulation of these enzymes. Here, we review the current knowledge on the glycosyltransferase and transpeptidase activities of PG synthases. We provide new data showing that the bifunctional PBP1A and PBP1B from Escherichia coli are active upon reconstitution into the membrane environment of proteoliposomes, and that these enzymes also exhibit DD-carboxypeptidase activity in certain conditions. Both novel features are relevant for their functioning within the cell. We also review recent data on the impact of protein–protein interactions and other factors on the activities of PBPs. As an example, we demonstrate a synergistic effect of multiple protein–protein interactions on the glycosyltransferase activity of PBP1B, by its cognate lipoprotein activator LpoB and the essential cell division protein FtsN.


1979 ◽  
Vol 25 (4) ◽  
pp. 436-446 ◽  
Author(s):  
R. T. Irvin ◽  
J. Lam ◽  
J. W. Costerton

Outer membrane derived 'ghosts' can be readily generated from both smooth and deep rough (heptose-deficient LPS) strains of Escherichia coli 08. Morphological and biochemical studies confirmed that 'ghosts' of both strains are composed of protein (four major proteins), LPS, and phospholipid (cardiolipin and phosphatidylethanolamine) in the form of a single membrane of roughly the same shape as intact normal cells. The ghost membrane cleaves only slightly in freeze-etch preparations of ghosts derived from the smooth strain as compared to the extensive cleavage plane of ghosts derived from the rough strain. The asymmetrical distribution of ghost proteins was visualized, by critical point drying and shadowing with platinum, as a relatively smooth outer surface with some discernible particles (10–15 nm) and an extremely particulate inner surface (10–15-nm particles). Ghosts derived from the smooth strain retained their structure following chloroform–methanol extraction, while ghosts derived from the rough strain fragmented with chloroform–methanol extraction. Evidence is presented that LPS–protein interactions as well as protein–protein interactions are significant in maintaining the ghost structure.


Sign in / Sign up

Export Citation Format

Share Document