Diabetic thermal hyperalgesia: Role of TRPV1 and CB1 receptors of periaqueductal gray

2010 ◽  
Vol 1328 ◽  
pp. 49-56 ◽  
Author(s):  
Ahmad Mohammadi-Farani ◽  
Mousa Sahebgharani ◽  
Zargham Sepehrizadeh ◽  
Elham Jaberi ◽  
Mahmoud Ghazi-Khansari
Author(s):  
Jayarami Reddy Medapati ◽  
Deepthi Rapaka ◽  
Veera Raghavulu Bitra ◽  
Santhosh Kumar Ranajit ◽  
Girija Sankar Guntuku ◽  
...  

Abstract Background The endocannabinoid CB1 receptor is known to have protective effects in kidney disease. The aim of the present study is to evaluate the potential agonistic and antagonistic actions and to determine the renoprotective potential of CB1 receptors in diabetic nephropathy. The present work investigates the possible role of CB1 receptors in the pathogenesis of diabetes-induced nephropathy. Streptozotocin (STZ) (55 mg/kg, i.p., once) is administered to uninephrectomised rats for induction of experimental diabetes mellitus. The CB1 agonist (oleamide) and CB1 antagonist (AM6545) treatment were initiated in diabetic rats after 1 week of STZ administration and were given for 24 weeks. Results The progress in diabetic nephropathy is estimated biochemically by measuring serum creatinine (1.28±0.03) (p < 0.005), blood urea nitrogen (67.6± 2.10) (p < 0.001), urinary microprotein (74.62± 3.47) (p < 0.005) and urinary albuminuria (28.31±1.17) (p < 0.0001). Renal inflammation was assessed by estimating serum levels of tumor necrosis factor alpha (75.69±1.51) (p < 0.001) and transforming growth factor beta (8.73±0.31) (p < 0.001). Renal morphological changes were assessed by estimating renal hypertrophy (7.38± 0.26) (p < 0.005) and renal collagen content (10.42± 0.48) (p < 0.001). Conclusions From the above findings, it can be said that diabetes-induced nephropathy may be associated with overexpression of CB1 receptors and blockade of CB1 receptors might be beneficial in ameliorating the diabetes-induced nephropathy. Graphical abstract


2017 ◽  
Vol 174 (21) ◽  
pp. 3837-3847 ◽  
Author(s):  
Erin M Rock ◽  
Guillermo Moreno-Sanz ◽  
Cheryl L Limebeer ◽  
Gavin N Petrie ◽  
Roberto Angelini ◽  
...  

1998 ◽  
Vol 357 (5) ◽  
pp. 514-518 ◽  
Author(s):  
Anna Pizzirusso ◽  
Patrizia Oliva ◽  
Sabatino Maione ◽  
Michele D’Amico ◽  
Francesco Rossi ◽  
...  

2021 ◽  
Author(s):  
Anil Kumar Kalvala ◽  
Arvind Bagde ◽  
Peggy Arthur ◽  
Sunil Kumar Surapaneni ◽  
Ramesh Nimma ◽  
...  

Abstract The purpose of this study was to investigate the neuroprotective effects of phytocannabinoids, synthetic cannabidiol (CBD) and tetrahydrocannabivarin (THCV) and their combination on taxol induced peripheral neuropathy (PIPN) in mice. Briefly, six groups of C57BL/6J mice (n = 6) were used. PTX (8 mg/kg/day, i.p.) was given to the mice on days 1, 3, 5, and 7 to induce neuropathy. Mice were evaluated for their behavioral parameters and also at the end of the study, DRG collected from the animals were subjected to RNA sequence and westernblot analysis. Further, immunocytochemistry and mitochondrial functional assays were performed on cultured DRGs derived from SD rats. The combination of CBD and THCV improved thermal and mechanical neurobehavioral symptoms in mice by two folds as compared to individual treatments. KEGG (RNA Sequencing) identified P38-MAPK, AMPK, and PI3K-AKT pathways as potential CBD and THCV therapeutic targets. In PTX-treated animals, the expression of p-AMPK, SIRT1, NRF2, HO1, SOD2, and catalase was significantly reduced (p<0.001), whereas the expression of PI3K, p-AKT, p-P38 MAP kinase, BAX, TGF-, NLRP3 inflammasome, and caspase 3 was significantly increased (p<0.001) when compared to control group. In reversing these protein expressions, combination therapy outperformed single therapies. CBD and THCV treatment increased AMPK, Catalase, and Complex I expression while decreasing mitochondrial superoxides in DRG primary cultures. In mice and DRG primary cultures, WAY100135 and rimonabant inhibited the effects of CBD and THCV by blocking 5 HT1A and CB1 receptors. In conclusion, entourage effect of CBD and THCV combination against PIPN appears to protect neurons in mice by modulating 5HT1A and CB1 receptors, respectively.


2020 ◽  
Vol 42 (6) ◽  
pp. 515-521 ◽  
Author(s):  
Marjan Hosseini ◽  
Mohsen Parviz ◽  
Alireza P. Shabanzadeh ◽  
Elham Zamani ◽  
Parvaneh Mohseni-Moghaddam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document