Thermoregulation and thermal sensation in response to wearing tight-fitting respirators and exercising in hot-and-humid indoor environment

2019 ◽  
Vol 160 ◽  
pp. 106158 ◽  
Author(s):  
Yi-Chun Lin ◽  
Chen-Peng Chen
Urban Science ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 53
Author(s):  
Haven Hailu ◽  
Eshetu Gelan ◽  
Yared Girma

Indoor thermal comfort is an essential aspect of sustainable architecture and it is critical in maintaining a safe indoor environment. Expectations, acceptability, and preferences of traditional and modern buildings are different in terms of thermal comfort. This study, therefore, attempts to evaluate the indoor thermal comforts of modern and traditional buildings and identify the contributing factors that impede or facilitate indoor thermal comfort in Semera city, Ethiopia. This study employed subjective and objective measurements. The subjective measurement is based on the ASHRAE seven-point thermal sensation scale. An adaptive comfort model was employed according to the ASHRAE standard to evaluate indoor thermal comfort. The results revealed that with regards to thermal sensational votes between −1 and +1, 88% of the respondents are satisfied with the indoor environment in traditional houses, while in modern houses this figure is 22%. Likewise, 83% of occupants in traditional houses expressed a preference for their homes to remain the same or be only slightly cooler or warmer. Traditional houses were, on average, in compliance with the 80% acceptability band of the adaptive comfort standard. The study investigated that traditional building techniques and materials, in combination with consideration of microclimate, were found to play a significant role in regulating the indoor environment.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 808 ◽  
Author(s):  
Hao Tian ◽  
Wei Zhang ◽  
Lingzhi Xie ◽  
Zhichun Ni ◽  
Qingzhu Wei ◽  
...  

Thermal comfort is an important aspect to take into consideration for the indoor environment of a building integrated with a semi-transparent Photovoltaics (STPV) system. The thermal comfort of units with photovoltaic windows and that of conventional windows, which is an ordinary without PV, were evaluated via on-site tests and questionnaires. Using the thermal comfort investigation of the test rig, the maximum difference in air temperature was found to be around 5 °C between test unit and comparison unit. The predicted mean vote (PMV)–predicted percentage dissatisfied (PPD) value of the test unit was better than that of the comparison unit. It was observed that on sunny days, the PMV value ranged from 0.2 (nature) to 1.3 (slightly warm) in the test unit, and that of the comparison unit was 0.7 (slightly warm) to 2.0 (warm), thereby providing better thermal comfort, especially during mornings. The maximum difference in PPD values was found to reach 27% between the two units at noon. On cloudy days, the difference was negligible, and the thermal sensation between the foot and the head were almost the same. Fifty respondents were asked to complete a carefully designed questionnaire. The thermal sensation of the test unit was better than that of comparison unit, which corresponded with the test results. Thermal, lighting, acoustic, and other environment comfort scores were combined, and the acceptance of the test unit with the STPV windows was found to be 73.8%. The thermal sensation difference between men and women was around 5%. Thus, during summer, STPV windows can improve the thermal comfort and potentially reduce the air-conditioning load.


2019 ◽  
Vol 282 ◽  
pp. 02031
Author(s):  
Ricardo M.S.F. Almeida ◽  
Eva Barreira ◽  
Sandra Soares ◽  
Ramos Nuno M.M. ◽  
Sérgio Lopes ◽  
...  

The importance of a good indoor environment for peoples’ health and wellbeing is nowadays clearly established. Besides enhancing the wellbeing of building occupants and helping decrease the occurrence of building related illness, a good indoor environment can also lead to a decrease in worker complaints and absenteeism. This paper presents the results of a three-month monitoring campaign where the thermal comfort of a toll station was evaluated, including the main room and the cabins. The physical parameters required for the assessment of both global and local thermal comfort were measured and the results were compared with the thermal perception of the occupants, which was collected through questionnaires. The indoor environmental quality in the main room was better than in the cabins and a mismatch between the PMV index and the occupants thermal sensation was identified.


2018 ◽  
Vol 44 ◽  
pp. 00021 ◽  
Author(s):  
Robert Cichowicz ◽  
Artur Stelęgowski

Thermal microclimate in a boiler room is formed by factors resulting from thermal processes that are taking place in combustion units. These factors are negatively affecting the indoor environment by worsening the air quality, and therefore it is crucial to maintain adequate air parameters in the room. It is a consequence of the fact that in the boiler room the operation of technological equipment results in an exposure of workers to adverse effects caused by thermal factors. Therefore, the evaluation of thermal conditions in the work area of people was made for the selected industrial boiler room using PMV and PPD indices (which allow to determine the thermal sensation of employees, regarding their surrounding thermal environment, based on the methodology of ISO 7730 standard). The analysis was based on own experimental measurements and numerical calculations made in the DesignBuilder program.


Proceedings ◽  
2018 ◽  
Vol 2 (15) ◽  
pp. 1126
Author(s):  
Raghavalu Thirumalai Durai Prabhakaran ◽  
Simon F. Curling ◽  
Morwenna Spear ◽  
Graham A. Ormondroyd

According to the literature, both advanced and developing countries are facing several challenges due to the lack of clean energy and emissions of CO2 leading to climate change. Especially in the built environment, energy efficient buildings are highly desirable to save energy without affecting occupant’s health while providing an acceptable indoor environment and thermal conditions. The use of insulation, passive solar heating, and HVAC systems can contribute to improve the indoor thermal comfort. In the present study, a numerical simulation model is developed to evaluate the human comfort factors in a simulated indoor environment. The CFD model considers the thermal interaction of humans with the indoor environment. Ventilation and a heat source are added to model a workspace for evaluating indoor air temperature and human comfort factors. Indices like predicted mean vote (PMV) and predicted percentage dissatisfaction (PPD) are evaluated to assess thermal sensation of human body when adding and removing a heat source in the model office (i.e., radiator).


2017 ◽  
Vol 28 (1) ◽  
pp. 46-62 ◽  
Author(s):  
Dongwoo Yeom ◽  
Joon-Ho Choi ◽  
Yimin Zhu

In the domain of building science and architectural design, the immersive virtual environment is being commonly adopted due to its convenience and cost-effectiveness, especially for research relevant to occupant behaviour in a building indoor environmental control. The goal of this study is to investigate whether such an immersive virtual environment condition could affect an occupant's thermal sensation and physiological response to ambient conditions differently, as compared to a real indoor environment, even though those two thermal conditions are the same or very similar. A series of human subject experiments using 18 participants was conducted in an environmental chamber. While thermal conditions were controlled at 20℃ to 30℃ in each environment, respectively, participants were asked to periodically report their thermal sensations on their body. Their heart rates were also continuously measured. The result of our experiments revealed that overall thermal sensations on the whole and local body areas showed some significant differences between the indoor environment and immersive virtual environment conditions during the same thermal conditions. Also, the heart rate difference between two environmental conditions was statistically significant at every thermal sensation level. These findings support the idea that significant physiological response differences could be affected by the immersive virtual environment condition.


Buildings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 213 ◽  
Author(s):  
Draganova ◽  
Tsuzuki ◽  
Nabeshima

Comfort in university dormitory buildings in Japan is under-investigated as compared to offices and residences. A winter field survey conducted in two university dormitories in Central Japan aimed at investigating the differences in thermal responses of occupants relative to nationality and; to estimate their neutral and comfortable temperature under identical climatic conditions. Acceptability of the indoor environment was invariably high. While evaluation and preference votes depended on nationality; thermal sensation vote did not. Both Japanese and non-Japanese subjects voted neutral at a mean indoor temperature of 22 C. The estimated probability of voting neutral for Japanese subjects was highest (65%) from 19 C to 22 C, while for non-Japanese subjects it was highest (75%) at a wider range: From 19 C to 24 C. Japanese students were more sensitive of and more critical about their indoor environment as opposed to the internationals (adjusted regression coefficients 0.55/K and 0.20/K). Griffiths’ model estimated the comfortable temperature for non-Japanese subjects at a 2 C wider range and at a 2 C higher average than for Japanese subject. Neutral and comfortable temperatures observed and estimated in the study were split above and below the recommended temperature threshold of 20 C for Japan in winter


Sign in / Sign up

Export Citation Format

Share Document