GSV2SVF-an interactive GIS tool for sky, tree and building view factor estimation from street view photographs

2020 ◽  
Vol 168 ◽  
pp. 106475 ◽  
Author(s):  
Jianming Liang ◽  
Jianhua Gong ◽  
Jinming Zhang ◽  
Yi Li ◽  
Dong Wu ◽  
...  
2017 ◽  
Vol 9 (5) ◽  
pp. 411 ◽  
Author(s):  
Jianming Liang ◽  
Jianhua Gong ◽  
Jun Sun ◽  
Jieping Zhou ◽  
Wenhang Li ◽  
...  

2019 ◽  
Vol 2 ◽  
pp. 1-8
Author(s):  
Shoko Nishio ◽  
Fumiko Ito

<p><strong>Abstract.</strong> We applied a computation method of calculating the sky view factor (SVF) using Google Street View to Shibuya area, Tokyo, for the purpose of examining the relation between the SVF/SVF change and physical elements. The distribution of the SVF calculated by the above method was visualized, and the statistical process showed the tendency of a high SVF in quasi-residential districts and roadsides of high-graded trunk roads. The difference in the SVF change was small at 10-m intervals. The SVF change tended to be more apparent near an intersection and at different elevations.</p>


2022 ◽  
Vol 14 (2) ◽  
pp. 260
Author(s):  
Eun-Sub Kim ◽  
Seok-Hwan Yun ◽  
Chae-Yeon Park ◽  
Han-Kyul Heo ◽  
Dong-Kun Lee

Extreme heat exposure has severe negative impacts on humans, and the issue is exacerbated by climate change. Estimating spatial heat stress such as mean radiant temperature (MRT) is currently difficult to apply at city scale. This study constructed a method for estimating the MRT of street canyons using Google Street View (GSV) images and investigated its large-scale spatial patterns at street level. We used image segmentation using deep learning to calculate the view factor (VF) and project panorama into fisheye images. We calculated sun paths to estimate MRT using panorama images from Google Street View. This paper shows that regression analysis can be used to validate between estimated short-wave, long-wave radiation and the measurement data at seven field measurements in the clear-sky (0.97 and 0.77, respectively). Additionally, we compared the calculated MRT and land surface temperature (LST) from Landsat 8 on a city scale. As a result of investigating spatial patterns of MRT in Seoul, South Korea, we found that a high MRT of street canyons (>59.4 °C) is mainly distributed in open space areas and compact low-rise density buildings where the sky view factor is 0.6–1.0 and the building view factor (BVF) is 0.35–0.5, or west-east oriented street canyons with an SVF of 0.3–0.55. However, high-density buildings (BVF: 0.4–0.6) or high-density tree areas (Tree View Factor, TVF: 0.6–0.99) showed low MRT (<47.6). The mapped MRT results had a similar spatial distribution to the LST; however, the MRT was lower than the LST in low tree density or low-rise high-density building areas. The method proposed in this study is suitable for a complex urban environment consisting of buildings, trees, and streets. This will help decision makers understand spatial patterns of heat stress at the street level.


2020 ◽  
Vol 27 (8) ◽  
pp. 082702 ◽  
Author(s):  
C. V. Young ◽  
L. Masse ◽  
D. T. Casey ◽  
B. J. MacGowan ◽  
O. L. Landen ◽  
...  

2019 ◽  
Vol 200 ◽  
pp. 109934 ◽  
Author(s):  
Furkan Fatih Sönmez ◽  
Hesan Ziar ◽  
Olindo Isabella ◽  
Miro Zeman

Author(s):  
Shoko Nishio ◽  
Fumiko Ito

AbstractIn recent years, big data entered use in various fields. Google Street View (hereinafter called “GSV”) can be regarded as open big data, and its images can be obtained using API. The streets can be viewed 360° horizontally and 290° vertically from each point on the web. In addition to those, zooming up is available, and the viewpoint can be moved approximately 10 m forward or backward to/from the current point. The original image to provide the view is the panoramic image associated with the latitude and longitude information on the street consecutively at intervals of 10 m, and they exist as massive data on the web. We determine the area of the sky using these images from GSV. In this research, we calculate the sky view factor (hereinafter called “SVF”) in an extended area by defining the area of the sky with the SVF and utilizing the computer.


2018 ◽  
Vol 40 ◽  
pp. 26
Author(s):  
Angela Fatima da Rocha ◽  
Ernany Paranaguá da Silva ◽  
Carlo Ralph de Musis ◽  
Marta Cristina de Albuquerque Nogueira

This article aims to analyse the sky view factor (SVF) in one of the hottest cities of the Brazilian Cerrado, and its correlation with thermal comfort in two urban sections with different characteristics, as well as the physiological equivalent temperature (PET) and predicted mean vote (PMV) indices, complemented by a characterisation in the frequency field for a 12-month cut-off in the same year of relative air temperature and humidity. The study area was located in the central region of Cuiabá, Mato Grosso, due to the presence of regions with high urbanisation indices and small parks; one section composed of afforested area and second section composed of varied buildings. To obtain the SVF, the Google Street View image database was used, from which fisheye images were reconstructed and the SVF was determined using  RayMan  software. The PET and PMV indices were determined for the morning, afternoon, and evening, with comfort in the morning and discomfort in the afternoon and evening. Traditional Morlet wavelets were plotted for time series of relative air temperature and humidity for the year 2015, which qualitatively demonstrated some of the dynamics of these micrometeorological variables for tropical Cerrado climate.


2020 ◽  
pp. 57-65
Author(s):  
Eusébio Conceiçã ◽  
João Gomes ◽  
Maria Manuela Lúcio ◽  
Jorge Raposo ◽  
Domingos Xavier Viegas ◽  
...  

This paper refers to a numerical study of the hypo-thermal behaviour of a pine tree in a forest fire environment. The pine tree thermal response numerical model is based on energy balance integral equations for the tree elements and mass balance integral equation for the water in the tree. The simulation performed considers the heat conduction through the tree elements, heat exchanges by convection between the external tree surfaces and the environment, heat exchanges by radiation between the flame and the external tree surfaces and water heat loss by evaporation from the tree to the environment. The virtual three-dimensional tree model has a height of 7.5 m and is constituted by 8863 cylindrical elements representative of its trunks, branches and leaves. The fire front has 10 m long and a 2 m high. The study was conducted taking into account that the pine tree is located 5, 10 or 15 m from the fire front. For these three analyzed distances, the numerical results obtained regarding to the distribution of the view factors, mean radiant temperature and surface temperatures of the pine tree are presented. As main conclusion, it can be stated that the values of the view factor, MRT and surface temperatures of the pine tree decrease with increasing distance from the pine tree in front of fire.


2020 ◽  
Vol 2020 (1) ◽  
pp. 78-81
Author(s):  
Simone Zini ◽  
Simone Bianco ◽  
Raimondo Schettini

Rain removal from pictures taken under bad weather conditions is a challenging task that aims to improve the overall quality and visibility of a scene. The enhanced images usually constitute the input for subsequent Computer Vision tasks such as detection and classification. In this paper, we present a Convolutional Neural Network, based on the Pix2Pix model, for rain streaks removal from images, with specific interest in evaluating the results of the processing operation with respect to the Optical Character Recognition (OCR) task. In particular, we present a way to generate a rainy version of the Street View Text Dataset (R-SVTD) for "text detection and recognition" evaluation in bad weather conditions. Experimental results on this dataset show that our model is able to outperform the state of the art in terms of two commonly used image quality metrics, and that it is capable to improve the performances of an OCR model to detect and recognise text in the wild.


Sign in / Sign up

Export Citation Format

Share Document