Hygrothermal performance of hydrophobized and internally insulated masonry walls - Simulating the impact of hydrophobization based on experimental results

2021 ◽  
Vol 187 ◽  
pp. 107410
Author(s):  
Vasilis Soulios ◽  
Ernst Jan de Place Hansen ◽  
Ruut Peuhkuri
2021 ◽  
Vol 2069 (1) ◽  
pp. 012019
Author(s):  
E Vereecken ◽  
S Roels

Abstract Internal insulation remains often the only option to thermally upgrade massive masonry. Unfortunately, internal insulation can significantly change the wall’s hygrothermal performance, resulting in a higher risk on frost damage, wood rot of embedded beam heads, etc. The application of hydrophobisation is often put forward as a potential measure to avoid moisture problems, though more research on the impact of hydrophobisation is still required. Thereto, the current paper presents the results of a field study on the hygrothermal performance of internally insulated masonry with embedded wooden beam heads, exposed to wind-driven rain. Both a vapour open capillary active and a vapour tight insulation system are studied. Mainly the moisture conditions near the back of the wooden beam head are found to be influenced by hydrophobisation, which lowers the relative humidity. Closer to the masonry’s interior surface, the choice of the insulation system also influences the results. In case of a well-applied hydrophobisation, overall, the vapour tight system shows a better performance than the capillary active vapour open system. An exception to this is found for the first months after applying the hydrophobisation and the insulation system, where a longer drying period is needed in case of the vapour tight system.


2016 ◽  
Author(s):  
Leonardo Becchetti ◽  
Maurizio Fiaschetti ◽  
Francesco Salustri

2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3459
Author(s):  
Radosław Jasiński ◽  
Krzysztof Stebel ◽  
Paweł Kielan

Safety and reliability of constructions operated are predicted using the known mechanical properties of materials and geometry of cross-sections, and also the known internal forces. The extensometry technique (electro-resistant tensometers, wire gauges, sensor systems) is a common method applied under laboratory conditions to determine the deformation state of a material. The construction sector rarely uses ultrasonic extensometry with the acoustoelastic (AE) method which is based on the relation between the direction of ultrasonic waves and the direction of normal stresses. It is generally used to identify stress states of machine or vehicles parts, mainly made of steel, characterized by high homogeneity and a lack of inherent internal defects. The AE effect was detected in autoclaved aerated concrete (AAC), which is usually used in masonry units. The acoustoelastic effect was used in the tests described to identify the complex stress state in masonry walls (masonry units) made of AAC. At first, the relationships were determined for mean hydrostatic stresses P and mean compressive stresses σ3 with relation to velocities of the longitudinal ultrasonic wave cp. These stresses were used to determine stresses σ3. The discrete approach was used which consists in analyzing single masonry units. Changes in velocity of longitudinal waves were identified at a test stand to control the stress states of an element tested by the digital image correlation (DIC) technique. The analyses involved density and the impact of moisture content of AAC. Then, the method was verified on nine walls subjected to axial compression and the model was validated with the FEM micromodel. It was demonstrated that mean compressive stresses σ3 and hydrostatic stresses, which were determined for the masonry using the method considered, could be determined even up to ca. 75% of failure stresses at the acceptable error level of 15%. Stresses σ1 parallel to bed joints were calculated using the known mean hydrostatic stresses and mean compressive stresses σ3.


Author(s):  
Andrea Morone ◽  
Rocco Caferra ◽  
Alessia Casamassima ◽  
Alessandro Cascavilla ◽  
Paola Tiranzoni

AbstractThis work aims to identify and quantify the biases behind the anomalous behavior of people when they deal with the Three Doors dilemma, which is a really simple but counterintuitive game. Carrying out an artefactual field experiment and proposing eight different treatments to isolate the anomalies, we provide new interesting experimental evidence on the reasons why subjects fail to take the optimal decision. According to the experimental results, we are able to quantify the size and the impact of three main biases that explain the anomalous behavior of participants: Bayesian updating, illusion of control and status quo bias.


2004 ◽  
Vol 20 (3) ◽  
pp. 256-280 ◽  
Author(s):  
Xosé Rosales Sequeiros

This article explores second language (L2) learners’ interpretation of reflexive anaphora in VP-Ellipsis by critiquing the work of Ying (2003), who applies Relevance Theory to explain elliptical anaphora. It argues against four claims made in his analysis: that L2 learners apply maximal relevance in anaphoric interpretation; that a procedural account of the impact of referential sentences on VP-ellipsis disambiguation is appropriate; that an account of anaphoric interpretation preferences should be based on processing cost; and that differences in experimental results between intermediate and advanced L2 learners are due to the use of different comprehension strategies (see Sperber, 1994). Instead, it argues: that it is not maximal but rather optimal relevance that is at work; that the key in disambiguating anaphora in VP-elliptical sentences is the achievement of an optimally relevant interpretation; that the role of contextual assumptions in anaphora resolution is to enable L2 learners to derive enough contextual effects to make it worth their effort and, in doing so, identifying (as a side effect) what they take to have been the intended referent; and that what is crucial in the use of comprehension strategies is not processing effort, but rather consistency with the second principle of relevance. Overall, all these factors provide the basis for an alternative and more comprehensive explanation of the experimental results discussed by Ying.


2011 ◽  
Vol 332-334 ◽  
pp. 27-30 ◽  
Author(s):  
Mei Niu ◽  
Zi Lu Wu ◽  
Jin Ming Dai ◽  
Wen Sheng Hou ◽  
Sheng Shi ◽  
...  

Wool fiber was firstly pretreated by nano-SiO2/Ag antibacterial agent, and then dyed with an acid dyes at low temperature by ultrasonic dyeing. Many factors had an important influence on the dye ability and the antibacterial behavior during the dyeing process of antibacterial wool fiber. The experimental results indicate that the dye-takeup rates of antibacterial wool fiber were enhanced with the increase of the concentration of nano-SiO2/Ag, the dyeing temperature, the dyeing time and the ultrasonic frequency (less than 60Hz). However, the antibacterial ratios of wool fiber were declined in the impact of these factors other than the concentration of antibacterial agent.


2013 ◽  
Vol 281 ◽  
pp. 47-50
Author(s):  
Zhi Hong Chen

In this paper we propose a new steganographic method, which based on wet paper codes and wavelet transformation. The method is designed to embed secret messages in images' wavelet coefficients and depends on images' texture characters in local neighborhood. The receivers can extract secret bits from carrier images only by some matrix multiplications without knowing the formulas written by senders, which further improves steganographic security and minimizes the impact of embedding changes. The experimental results show that our proposed method has good robust and visual concealment performance and proves out it's a practical steganographic algorithm.


2016 ◽  
Vol 28 (12) ◽  
pp. 1614-1626 ◽  
Author(s):  
Wan-Li Song ◽  
Dong-Heng Li ◽  
Yan Tao ◽  
Na Wang ◽  
Shi-Chao Xiu

The aim of this work is to investigate the effect of the small magnetorheological fluid gap on the braking performance of the magnetorheological brake. In this article, theoretical analyses of the output torque are given first, and then the operating principle and design details of the magnetorheological brake whose magnetorheological fluid gap can be altered are presented and discussed. Next, the magnetic circuit of the proposed magnetorheological brake is conducted and further followed by a magnetostatic simulation of the magnetorheological brakes with different sizes of fluid gap. A prototype of the magnetorheological brake is fabricated and a series of tests are carried out to evaluate the braking performance and torque stability, as well as the verification of the simulation results. Experimental results show that the braking torque increases with the increase in the current, and the difference for the impact of the fluid gap on braking performance is huge under different currents. The rules, which the experimental results show, have an important significance on both the improvement of structure design for magnetorheological brake and the investigation of the wear property under different fluid gaps.


Sign in / Sign up

Export Citation Format

Share Document