Study on the Dyeing Behavior of Wool Fiber Treated with Nano-SiO2/Ag Antibacterial Agent

2011 ◽  
Vol 332-334 ◽  
pp. 27-30 ◽  
Author(s):  
Mei Niu ◽  
Zi Lu Wu ◽  
Jin Ming Dai ◽  
Wen Sheng Hou ◽  
Sheng Shi ◽  
...  

Wool fiber was firstly pretreated by nano-SiO2/Ag antibacterial agent, and then dyed with an acid dyes at low temperature by ultrasonic dyeing. Many factors had an important influence on the dye ability and the antibacterial behavior during the dyeing process of antibacterial wool fiber. The experimental results indicate that the dye-takeup rates of antibacterial wool fiber were enhanced with the increase of the concentration of nano-SiO2/Ag, the dyeing temperature, the dyeing time and the ultrasonic frequency (less than 60Hz). However, the antibacterial ratios of wool fiber were declined in the impact of these factors other than the concentration of antibacterial agent.

2015 ◽  
Vol 23 (2) ◽  
pp. 65-76 ◽  
Author(s):  
Simona Antighin ◽  
Laura Chirila ◽  
Alina Popescu

Abstract The aim of this research was to evaluate the influence of dyeing process on the quality of surface waters contaminated with heavy metals and organic compounds, resulted after the wool dyeing process. In order to mark out this aspects an environment friendly method was proposed which involves dyeing wool fiber with new complex combinations derived from a new acid dyes which were complexed, using copper, iron, nickel and zinc salts at 2:1 combination ratio. In order to point out the environmental point of view of wastewaters an experimental protocol was tested by dyeing wool fiber at different pH. Evaluation of complexed combinations impact on the environment involve the following indicators: consumption degree of dyeing solution from the process bath, treatment degree related to the organic content expressed by COD indicator and treatment degree related to the heavy metal concentration respectively.


2019 ◽  
Vol 218 ◽  
pp. 284-293 ◽  
Author(s):  
Jie Sun ◽  
Haiying Wang ◽  
Chunling Zheng ◽  
Guowei Wang

2017 ◽  
Vol 135 (6) ◽  
pp. 45793 ◽  
Author(s):  
Haiying Wang ◽  
Guowei Wang ◽  
Chunlin Zheng ◽  
Tijian Zhou ◽  
Jie Sun

2020 ◽  
Vol 49 (3) ◽  
pp. 165-170
Author(s):  
Kashif Iqbal ◽  
Amjed Javid ◽  
Abdur Rehman ◽  
Aisha Rehman ◽  
Munir Ashraf ◽  
...  

Purpose This study aims to deal with the dyeing of nylon-/cotton-blended fabric in one bath using direct and acid dyes. Design/methodology/approach The cellulose in cotton/nylon-blended fabric was chemically modified using 3-chloro-2-hydroxypropyl tri-methyl ammonium chloride (CHPTAC) as cationizing agent to impart positive charge on the cellulose. The modified and unmodified blended fabrics were dyed in a single bath with direct and acid dyes under various concentrations of 0.5, 1, 2, 4 and 6 per cent on the weight of fabric by exhaust method. The dyeing of modified and unmodified fabrics was characterized through the properties such as K/S and colorfastness to washing, rubbing and light. Findings The modified fabric exhibited higher color yield, comparable rubbing fastness and good washing fastness. Originality/value The dye uptake was maximum in a single-bath dyeing process of nylon-/cotton-blended fabrics without electrolyte addition, which minimizes the impact of dyes on environment.


Author(s):  
P. Vikulin ◽  
K. Khlopov ◽  
M. Cherkashin

Enhancing water purification processes is provided by various methods including physical ones, in particular, exposure to ultrasonic vibrations. The change in the dynamic viscosity of water affects the rate of deposition of particles in the aquatic environment which can be used in natural and wastewater treatment. At the Department Water Supply and Wastewater Disposal of the National Research Moscow State University of Civil Engineering experimental studies were conducted under laboratory conditions to study the effect of ultrasound on the change in the dynamic viscosity of water. A laboratory setup has been designed consisting of an ultrasonic frequency generator of the relative intensity, a transducer (concentrator) that transmits ultrasonic vibrations to the source water, and sonic treatment tanks. Experimental studies on the impact of the ultrasonic field in the cavitation mode on the dynamic viscosity of the aqueous medium were carried out the exposure time was obtained to achieve the maximum effect.Интенсификация процессов очистки воды осуществляется с помощью различных методов, в том числе и физических, в частности воздействием ультразвуковых колебаний. Изменение динамической вязкости воды влияет на скорость осаждения частиц в водной среде, что может быть использовано в процессах очистки природных и сточных вод. На кафедре Водоснабжение и водоотведение Национального исследовательского Московского государственного строительного университета в лабораторных условиях проведены экспериментальные исследования по изучению влияния ультразвука на изменение динамической вязкости воды. Разработана схема лабораторной установки, состоящая из генератора ультразвуковых частот с соответствующей интенсивностью, преобразователя (концентратора), передающего ультразвуковые колебания в исходную воду, и емкости для озвучивания. Выполнены экспериментальные исследования по влиянию ультразвукового поля в режиме кавитации на динамическую вязкость водной среды, получено время экспозиции для достижения максимального эффекта.


2016 ◽  
Author(s):  
Leonardo Becchetti ◽  
Maurizio Fiaschetti ◽  
Francesco Salustri

2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


Author(s):  
Andrea Morone ◽  
Rocco Caferra ◽  
Alessia Casamassima ◽  
Alessandro Cascavilla ◽  
Paola Tiranzoni

AbstractThis work aims to identify and quantify the biases behind the anomalous behavior of people when they deal with the Three Doors dilemma, which is a really simple but counterintuitive game. Carrying out an artefactual field experiment and proposing eight different treatments to isolate the anomalies, we provide new interesting experimental evidence on the reasons why subjects fail to take the optimal decision. According to the experimental results, we are able to quantify the size and the impact of three main biases that explain the anomalous behavior of participants: Bayesian updating, illusion of control and status quo bias.


Sign in / Sign up

Export Citation Format

Share Document