Activity of MK1775, a selective Wee1 inhibitor, alone or in combination with gemcitabine, in sarcomas.

2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10084-10084
Author(s):  
Jenny Kreahling ◽  
Damon R. Reed ◽  
Parastou Foroutan ◽  
Gary Martinez ◽  
Robert Gillies ◽  
...  

10084 Background: Sarcomas consist of more than 50 subtypes of mesenchymal tumors. Doxorubicin alone or in combination has been the primary therapy for treatment of sarcomas; however, the response rates are suboptimal in many of the more common adult subtypes of soft tissue sarcoma. Accordingly, new agents are needed for the treatment of this heterogeneous group of diseases. Wee1 is a critical component of the G2/M cell cycle checkpoint control and mediates cell cycle arrest by regulating the phosphorylation of CDC2. Methods: MK1775 treatment of multiple sarcoma preclinical models at clinically relevant concentrations leads to unscheduled entry into mitosis and initiation of apoptotic cell death. In our current study we have investigated the therapeutic efficacy of MK1775 in sarcoma cell lines, patient-derived tumor explants ex vivo and in vivo in a xenograft model of osteosarcoma both alone and in combination with gemcitabine. Results: In patient-derived bone and soft tissue sarcoma samples ex vivo treatments show MK1775 in combination with gemcitabine causes significant apoptotic cell death suggesting that this treatment may represent a novel approach in the treatment of sarcomas. The cytotoxic effect of Wee1 inhibition on sarcoma cells appears to be independent of p53 mutational status. Furthermore, in a patient-derived osteosarcoma xenograft mouse model we show the therapeutic efficacy of MK1775 in vivo by utilizing magnetic resonance imaging (MRI) and diffusion MRI methods. Our data shows MK1775 in combination with gemcitabine dramatically slows tumor growth, increases apoptotic cell death and increases CDC2 activity. Cell viability, a clinically established prognostic indicator of survival, was lowest with the combination and very low in animals treated with MK1775 alone. This was mainly due to increased mineralization of the tumors. Caspase-3 was increased in MK1775 treated animals by immunohistochemistry as well. Conclusions: These results together with the promising safety profile of MK1775 strongly suggest that this drug can be used as a potential therapeutic agent alone or in combination with gemcitabine in the treatment of both adult as well as pediatric sarcoma patients.

2013 ◽  
Vol 104 (9) ◽  
pp. 1178-1188 ◽  
Author(s):  
Gui-Dong Li ◽  
Hiroyuki Kawashima ◽  
Akira Ogose ◽  
Takashi Ariizumi ◽  
Tetsuo Hotta ◽  
...  

Author(s):  
Chunfeng Xie ◽  
Xu Zhou ◽  
Chunhua Liang ◽  
Xiaoting Li ◽  
Miaomiao Ge ◽  
...  

Abstract Background Recently, a variety of clinical trials have shown that apatinib, a small-molecule anti-angiogenic drug, exerts promising inhibitory effects on multiple solid tumors, including non-small cell lung cancer (NSCLC). However, the underlying molecular mechanism of apatinib on NSCLC remains unclear. Methods MTT, EdU, AO/EB staining, TUNEL staining, flow cytometry, colony formation assays were performed to investigate the effects of apatinib on cell proliferation, cell cycle distribution, apoptosis and cancer stem like properties. Wound healing and transwell assays were conducted to explore the role of apatinib on migration and invasion. The regulation of apatinib on VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling were detected. Furthermore, we collected conditioned medium (CM) from A549 and H1299 cells to stimulate phorbol myristate acetate (PMA)-activated THP-1 cells, and examined the effect of apatinib on PD-L1 expression in macrophages. The Jurkat T cells and NSCLC cells co-culture model was used to assess the effect of apatinib on T cells activation. Subcutaneous tumor formation models were established to evaluate the effects of apatinib in vivo. Histochemical, immunohistochemical staining and ELISA assay were used to examine the levels of signaling molecules in tumors. Results We showed that apatinib inhibited cell proliferation and promoted apoptosis in NSCLC cells in vitro. Apatinib induced cell cycle arrest at G1 phase and suppressed the expression of Cyclin D1 and CDK4. Moreover, apatinib upregulated Cleaved Caspase 3, Cleaved Caspase 9 and Bax, and downregulated Bcl-2 in NSCLC cells. The colony formation ability and the number of CD133 positive cells were significantly decreased by apatinib, suggesting that apatinib inhibited the malignant and stem-like features of NSCLC cells. Mechanistically, apatinib inhibited PD-L1 and c-Myc expression by targeting VEGFR2/STAT3 signaling. Apatinib also inhibited PD-L1 expression in THP-1 derived macrophages stimulated by CM from NSCLC cells. Furthermore, apatinib pretreatment increased CD69 expression and IFN-γ secretion in stimulated Jurkat T cells co-cultured with NSCLC cells. Apatinib also promoted ROS production and inhibited Nrf2 and p62 expression, leading to the autophagic and apoptotic cell death in NSCLC. Moreover, apatinib significantly inhibited tumor growth in vivo. Conclusion Our data indicated that apatinib induced autophagy and apoptosis in NSCLC via regulating VEGFR2/STAT3/PD-L1 and ROS/Nrf2/p62 signaling.


2021 ◽  
Vol 22 (4) ◽  
pp. 2006
Author(s):  
Mi Jin Kim ◽  
Jinhong Park ◽  
Jinho Kim ◽  
Ji-Young Kim ◽  
Mi-Jin An ◽  
...  

Mercury is one of the detrimental toxicants that can be found in the environment and exists naturally in different forms; inorganic and organic. Human exposure to inorganic mercury, such as mercury chloride, occurs through air pollution, absorption of food or water, and personal care products. This study aimed to investigate the effect of HgCl2 on cell viability, cell cycle, apoptotic pathway, and alters of the transcriptome profiles in human non-small cell lung cancer cells, H1299. Our data show that HgCl2 treatment causes inhibition of cell growth via cell cycle arrest at G0/G1- and S-phase. In addition, HgCl2 induces apoptotic cell death through the caspase-3-independent pathway. Comprehensive transcriptome analysis using RNA-seq indicated that cellular nitrogen compound metabolic process, cellular metabolism, and translation for biological processes-related gene sets were significantly up- and downregulated by HgCl2 treatment. Interestingly, comparative gene expression patterns by RNA-seq indicated that mitochondrial ribosomal proteins were markedly altered by low-dose of HgCl2 treatment. Altogether, these data show that HgCl2 induces apoptotic cell death through the dysfunction of mitochondria.


2003 ◽  
Vol 44 (5) ◽  
pp. 2184 ◽  
Author(s):  
Kan Koizumi ◽  
Vassiliki Poulaki ◽  
Sven Doehmen ◽  
Gerhard Welsandt ◽  
Sven Radetzky ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Toshinori Ozaki ◽  
Akira Nakagawara ◽  
Hiroki Nagase

A proper DNA damage response (DDR), which monitors and maintains the genomic integrity, has been considered to be a critical barrier against genetic alterations to prevent tumor initiation and progression. The representative tumor suppressor p53 plays an important role in the regulation of DNA damage response. When cells receive DNA damage, p53 is quickly activated and induces cell cycle arrest and/or apoptotic cell death through transactivating its target genes implicated in the promotion of cell cycle arrest and/or apoptotic cell death such asp21WAF1,BAX, andPUMA. Accumulating evidence strongly suggests that DNA damage-mediated activation as well as induction of p53 is regulated by posttranslational modifications and also by protein-protein interaction. Loss of p53 activity confers growth advantage and ensures survival in cancer cells by inhibiting apoptotic response required for tumor suppression. RUNX family, which is composed of RUNX1, RUNX2, and RUNX3, is a sequence-specific transcription factor and is closely involved in a variety of cellular processes including development, differentiation, and/or tumorigenesis. In this review, we describe a background of p53 and a functional collaboration between p53 and RUNX family in response to DNA damage.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3154
Author(s):  
Su Jin Lee ◽  
Oh-Shin Kwon

The combination of chemotherapy with chemosensitizing agents is a common approach to enhance anticancer activity while reducing the dose-dependent adverse side effects of cancer treatment. Herein, we investigated doxorubicin (DOX) and O-GlcNAc transferase (OGT) inhibitor OSMI-1 combination treatment, which significantly enhanced apoptosis in hepatocellular carcinoma cells (HepG2) as a result of synergistic drug action in disparate stress signaling pathways. Treatment with a low dose of DOX or a suboptimal dose of OSMI-1 alone did not induce apoptotic cell death in HepG2 cells. However, the combination of DOX with OSMI-1 in HepG2 cells synergistically increased apoptotic cell death through the activation of both the p53 and mitochondrial Bcl2 pathways compared to DOX alone. We also demonstrated that the combination of DOX and OSMI-1 stimulated cell death, dramatically reducing cell proliferation and tumor growth in vivo using a HepG2 xenograft mouse model. These findings indicate that OSMI-1 acts as a potential chemosensitizer by enhancing DOX-induced cell death. This study provides insight into a possible mechanism of chemotherapy resistance, identifies potential novel drug targets, and suggests that OGT inhibition could be utilized in clinical applications to treat hepatocellular carcinoma as well as other cancer types.


2011 ◽  
Vol 57 (6) ◽  
pp. 702-706 ◽  
Author(s):  
Patrick Meijer ◽  
Constantijn W Wouters ◽  
Wim J Oyen ◽  
Otto C Boerman ◽  
Gert Jan Scheffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document