ENDOTHELIAL CELL CONNEXIN EXPRESSION: INFLUENCE OF SUBSTRATE AND SHEAR STRESS

2004 ◽  
Vol 13 (3) ◽  
pp. 39-40
Author(s):  
Tiffany L Johnson ◽  
Robert M Nerem
1997 ◽  
Vol 78 (05) ◽  
pp. 1392-1398 ◽  
Author(s):  
A Schneider ◽  
M Chandra ◽  
G Lazarovici ◽  
I Vlodavsky ◽  
G Merin ◽  
...  

SummaryPurpose: Successful development of a vascular prosthesis lined with endothelial cells (EC) may depend on the ability of the attached cells to resist shear forces after implantation. The present study was designed to investigate EC detachment from extracellular matrix (ECM) precoated vascular prostheses, caused by shear stress in vitro and to test the performance of these grafts in vivo. Methods: Bovine aortic endothelial cells were seeded inside untreated polytetrafluoro-ethylene (PTFE) vascular graft (10 X 0.6 cm), PTFE graft precoated with fibronectin (FN), or PTFE precoated with FN and a naturally produced ECM (106 cells/graft). Sixteen hours after seeding the medium was replaced and unattached cells counted. The strength of endothelial cell attachment was evaluated by subjecting the grafts to a physiologic shear stress of 15 dynes/cm2 for 1 h. The detached cells were collected and quantitated. PTFE or EC preseeded ECM coated grafts were implanted in the common carotid arteries of dogs. Results: While little or no differences were found in the extent of endothelial cell attachment to the various grafts (79%, 87% and 94% of the cells attached to PTFE, FN precoated PTFE, or FN+ECM precoated PTFE, respectively), the number of cells retained after a shear stress was significanly increased on ECM coated PTFE (20%, 54% and 85% on PTFE, FN coated PTFE, and FN+ECM coated PTFE, respectively, p <0.01). Implantation experiments in dogs revealed a significant increase in EC coverage and a reduced incidence of thrombus formation on ECM coated grafts that were seeded with autologous saphenous vein endothelial cells prior to implantation. Conclusion: ECM coating significantly increased the strength of endothelial cell attachment to vascular prostheses subjected to shear stress. The presence of adhesive macromolecules and potent endothelial cell growth promoting factors may render the ECM a promising substrate for vascular prostheses.


1986 ◽  
Vol 83 (7) ◽  
pp. 2114-2117 ◽  
Author(s):  
P. F. Davies ◽  
A. Remuzzi ◽  
E. J. Gordon ◽  
C. F. Dewey ◽  
M. A. Gimbrone

ASAIO Journal ◽  
2000 ◽  
Vol 46 (6) ◽  
pp. 696-701 ◽  
Author(s):  
Katsuko Sakai Furukawa ◽  
Takashi Ushida ◽  
Hirohito Sugano ◽  
Tamotsu Tamaki ◽  
Norio Ohshima ◽  
...  

2016 ◽  
Vol 34 (5) ◽  
pp. 308-313 ◽  
Author(s):  
Ying Zhang ◽  
Bin Liao ◽  
Miaoling Li ◽  
Min Cheng ◽  
Yong Fu ◽  
...  

2015 ◽  
Vol 35 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Anuradha Doddaballapur ◽  
Katharina M. Michalik ◽  
Yosif Manavski ◽  
Tina Lucas ◽  
Riekelt H. Houtkooper ◽  
...  

1991 ◽  
Vol 260 (6) ◽  
pp. H1992-H1996 ◽  
Author(s):  
H. Jo ◽  
R. O. Dull ◽  
T. M. Hollis ◽  
J. M. Tarbell

Altered permeability of vascular endothelium to macromolecules may play a role in vascular disease as well as vascular homeostasis. Because the shear stress of flowing blood on the vascular wall is known to influence many endothelial cell properties, an in vitro system to measure transendothelial permeability (Pe) to fluorescein isothiocyanate conjugated bovine serum albumin under defined physiological levels of steady laminar shear stress was developed. Bovine aortic endothelial cells grown on polycarbonate filters pretreated with gelatin and fibronectin constituted the model system. Onset of 1 dyn/cm2 shear stress resulted in a Pe rise from 5.1 +/- 1.3 x 10(-6) cm/s to 21.9 +/- 4.6 X 10(-6) cm/s at 60 min (n = 6); while 10 dyn/cm2 shear stress increased Pe from 4.8 +/- 1.5 X 10(-6) cm/s to 50.2 +/- 6.8 X 10(-6) cm/s at 30 min and 49.6 +/- 8.9 X 10(-6) cm/s at 60 (n = 9). Pe returned to preshear values within 120 and 60 min after removal of 1 and 10 dyn/cm2 shear stress, respectively. The data show that endothelial cell Pe in vitro is acutely sensitive to shear stress.


Sign in / Sign up

Export Citation Format

Share Document