Rainfall, runoff and sediment transport relations in a mesoscale mountainous catchment: The River Isábena (Ebro basin)

CATENA ◽  
2010 ◽  
Vol 82 (1) ◽  
pp. 23-34 ◽  
Author(s):  
J.A. López-Tarazón ◽  
R.J. Batalla ◽  
D. Vericat ◽  
J.C. Balasch
Geomorphology ◽  
2009 ◽  
Vol 109 (3-4) ◽  
pp. 210-221 ◽  
Author(s):  
J.A. López-Tarazón ◽  
R.J. Batalla ◽  
D. Vericat ◽  
T. Francke

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1450 ◽  
Author(s):  
Dariusz Młyński ◽  
Andrzej Wałęga ◽  
Leszek Książek ◽  
Jacek Florek ◽  
Andrea Petroselli

The aim of the study was to analyze the possibility of using selected rainfall-runoff models to determine the design hydrograph and the related peak flow in a mountainous catchment. The basis for the study was the observed series of hydrometeorological data for the Grajcarek catchment area (Poland) for the years 1981–2014. The analysis was carried out in the following stages: verification of hydrometeorological data; determination of the design rainfall; and determination of runoff hydrographs with the following rainfall-runoff models: Snyder, NRCS-UH, and EBA4SUB. The conducted research allowed the conclusion that the EBA4SUB model may be an alternative to other models in determining the design hydrograph in ungauged mountainous catchments. This is evidenced by the lower values of relative errors in the estimation of peak flows with an assumed frequency for the EBA4SUB model, as compared to Snyder and NRCS-UH.


2020 ◽  
Vol 12 (20) ◽  
pp. 8376
Author(s):  
Qi Luo ◽  
Lin Zhen ◽  
Yunfeng Hu

Soil erosion and restoration affect the structure and function of ecosystems and society, and have attracted worldwide attention. Changes in runoff and sediment transport after restoration practices in China’s Loess Plateau have been widely studied and many valuable results have been reported. However, this research was mainly conducted in large watersheds, and quantified the effects of restoration practices through the restoration period. In this study, we compared two adjacent watersheds (one restored and the other natural) in a hill and gully region of China’s Loess Plateau to reveal the impacts of restoration practices. We collected annual rainfall, runoff, and sediment transport data from 1988 to 2018, then investigated temporal variation of runoff and sediment transport to examine their relationships with rainfall. We also calculated the retention rate of soil and water under the restoration practices. The restored watershed showed a significantly decreased sediment modulus (the amount per unit area); the natural watershed showed no significant change. In addition, the restored watershed had lower runoff and sediment modulus values than the natural watershed, with greater effectiveness as rainfall increased. Revegetation and terrace construction contributed more to the retention of soil and water (65.6 and 69.7%, respectively) than check dams (<10%). These results improve our understanding of the effects of restoration practices, and provide guidance on ways to preserve soil and water through restoration in a small watershed in the Loess Plateau.


2018 ◽  
Vol 34 (2) ◽  
pp. 763
Author(s):  
V. HRISSANTHOU ◽  
A. PSILOVIKOS

A mathematical model is used for the estimation of the annual sediment yield resulting from rainfall and runoff at the outlet of Nestos River basin (Toxotes, Thrace, Greece), where the ecologically interesting Nestos delta exists. The model is applied to that part of Nestos River basin (838 km2) which lies downstream of three dams. Two dams (Thissavros and Platanovryssi) have been already constructed, while the third one (Temenos) is under construction. The model consists of three sub-models: a rainfall-runoff sub-model, a surface erosion sub-model and a sediment transport sub-model for streams. This model is also capable of computing the annual erosion amount and sediment yield in the individual sub-basins


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1749 ◽  
Author(s):  
Lu ◽  
Chiang

In Taiwan, the steep landscape and highly vulnerable geology make it difficult to predict soil erosion and sediment transportation via variable transport conditions. In this study, we integrated the Taiwan universal soil loss equation (TUSLE) and slope stability conditions in the soil and water assessment tool (SWAT) as the SWAT-Twn model to improve sediment simulation and assess the sediment transport functions in the Chenyulan watershed, a small mountainous catchment. The results showed that the simulation of streamflow was satisfactory for calibration and validation. Before model calibration and validation for sediment, SWAT-Twn with default sediment transport method performed better in sediment simulation than the official SWAT model (version 664). The SWAT-Twn model coupled with the simplified Bagnold equation could estimate sediment export more accurately and significantly reduce the overestimated sediment yield by 65.7%, especially in highly steep areas. Furthermore, five different sediment transport methods (simplified Bagnold equation with/without routing by particle size, Kodoatie equation, Molinas and Wu equation, and Yang sand and gravel equation) were evaluated. It is suggested that modelers who conduct sediment studies in the mountainous watersheds with extreme rainfall conditions should adjust the modified universal soil loss equation (MUSLE) factors and carefully evaluate the sediment transportation equations in SWAT.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 230
Author(s):  
Paweł Gilewski

Precipitation is a key variable in the hydrological cycle and essential input data in rainfall-runoff modeling. Rain gauge data are considered as one of the best data sources of precipitation but before further use, the data must be spatially interpolated. The process of interpolation is particularly challenging over mountainous areas due to complex orography and a usually sparse network of rain gauges. This paper investigates two deterministic interpolation methods (inverse distance weighting (IDW), and first-degree polynomial) and their impact on the outputs of semi-distributed rainfall-runoff modeling in a mountainous catchment. The performed analysis considers the aspect of interpolation grid size, which is often neglected in other than fully-distributed modeling. The impact of the inverse distance power (IDP) value in the IDW interpolation was also analyzed. It has been found that the best simulation results were obtained using a grid size smaller or equal to 750 m and the first-degree polynomial as an interpolation method. The results indicate that the IDP value in the IDW method has more impact on the simulation results than the grid size. Evaluation of the results was done using the Kling-Gupta efficiency (KGE), which is considered to be an alternative to the Nash-Sutcliffe efficiency (NSE). It was found that KGE generally tends to provide higher and less varied values than NSE which makes it less useful for the evaluation of the results.


Sign in / Sign up

Export Citation Format

Share Document