Inhibitory effect of selected serotonin 5-HT1 and 5-HT2 receptor agonists on food intake in rainbow trout

Author(s):  
T. González ◽  
M.J. Mancebo ◽  
J.J. Pérez-Maceira ◽  
M. Aldegunde
1988 ◽  
Vol 254 (6) ◽  
pp. R891-R896 ◽  
Author(s):  
F. P. Lafeber ◽  
G. Flik ◽  
S. E. Wendelaar Bonga ◽  
S. F. Perry

Bidirectional whole body flux and branchial Ca2+ influx were measured in freshwater rainbow trout. Intra-arterial injections of homogenates of Stannius corpuscles (CS) as well as of a 54-kDa isolated product (hypocalcin) exerted an inhibitory effect on whole body Ca2+ influx, but did not effect Ca2+ efflux. Hypocalcin was more effective in reducing Ca2+ influx in trout acclimated to low-calcium freshwater than in fish from normal-calcium water. We conclude that the isolated product (hypocalcin) represents the hypocalcemic principle of the CS. Similar doses of hypocalcin caused quantitatively similar decreases in Ca2+ influx in vivo and in the isolated perfused head preparation. This indicates that the gills form the principle target for hypocalcin in trout. The branchial transepithelial potential did not change during hormone treatments. Possible mechanisms of hypocalcin action are suggested.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xiyao Zhang ◽  
Wensong Li ◽  
Ping Li ◽  
Manli Chang ◽  
Xu Huang ◽  
...  

As a regulator of food intake and energy metabolism, the role of ghrelin in glucose metabolism is still not fully understood. In this study, we determined the in vivo effect of ghrelin on incretin effect. We demonstrated that ghrelin inhibited the glucose-stimulated release of glucagon-like peptide-1 (GLP-1) when infused into the portal vein of Wistar rat. Hepatic vagotomy diminished the inhibitory effect of ghrelin on glucose-stimulated GLP-1 secretion. In addition, phentolamine, a nonselective α receptor antagonist, could recover the decrease of GLP-1 release induced by ghrelin infusion. Pralmorelin (an artificial growth hormone release peptide) infusion into the portal vein could also inhibit the glucose-stimulated release of GLP-1. And growth hormone secretagogue receptor antagonist, [D-lys3]-GHRP-6, infusion showed comparable increases of glucose stimulated GLP-1 release compared to ghrelin infusion into the portal vein. The data showed that intraportal infusion of ghrelin exerted an inhibitory effect on GLP-1 secretion through growth hormone secretagogue receptor 1α (GHS1α receptor), which indicated that the downregulation of ghrelin secretion after food intake was necessary for incretin effect. Furthermore, our results suggested that the enteric neural net involved hepatic vagal nerve and sympathetic nerve mediated inhibition effect of ghrelin on incretin effect.


1993 ◽  
Vol 265 (3) ◽  
pp. R481-R486 ◽  
Author(s):  
Y. Hirosue ◽  
A. Inui ◽  
A. Teranishi ◽  
M. Miura ◽  
M. Nakajima ◽  
...  

To examine the mechanism of the satiety-producing effect of cholecystokinin (CCK) in the central nervous system, we compared the potency of intraperitoneally (ip) or intracerebroventricularly (icv) administered CCK-8 and its analogues on food intake in fasted mice. The icv administration of a small dose of CCK-8 (0.03 nmol/brain) or of Suc-(Thr28, Leu29, MePhe33)-CCK-7 (0.001 nmol/brain) suppressed food intake for 20 min, whereas CCK-8 (1 nmol/kg, which is equivalent to 0.03 nmol/brain) or Suc-(Thr28, Leu29, MePhe33)-CCK-7 (1 nmol/kg) had satiety effect after ip administration. Dose-response studies indicated the following rank order of potency: Suc-CCK-7 > or = Suc-(Thr28, Leu29, MePhe33)-CCK-7 > or = CCK-8 > or = (Nle28,31)-CCK-8 >> desulfated CCK-8 = CCK-4 = 0 in the case of ip administration and Suc-(Thr28, Leu29, MePhe33)-CCK-7 >> Suc-CCK-7 > or = CCK-8 > or = (Nle28,31)-CCK-8 >> desulfated CCK-8 = CCK-4 = 0 in the case of icv administration. The selective CCK-A receptor antagonist MK-329 reversed the inhibitory effect of the centrally as well as peripherally administered CCK-8, or of Suc-(Thr28, Leu29, MePhe33)-CCK-7, whereas the selective CCK-B receptor antagonist L-365260 did not. The icv administered CCK-8 did not appear in the peripheral circulation. These findings suggest the participation of CCK-A receptors in the brain in mediating the satiety effect of CCK and the difference in CCK-A receptors in the brain and peripheral tissues.


2018 ◽  
Vol 103 (8) ◽  
pp. 1076-1086 ◽  
Author(s):  
João Paulo Cavalcanti-de-Albuquerque ◽  
Grasielle Clotildes Kincheski ◽  
Ruy Andrade Louzada ◽  
Antônio Galina ◽  
Anna Paola Trindade Rocha Pierucci ◽  
...  

2019 ◽  
Vol 95 (2) ◽  
pp. 202-208
Author(s):  
Yusuke Sumitani ◽  
Kenta Uchibe ◽  
Kaya Yoshida ◽  
Yao Weng ◽  
Jiajie Guo ◽  
...  

1996 ◽  
Vol 270 (5) ◽  
pp. R1141-R1147 ◽  
Author(s):  
C. Hogstrand ◽  
P. M. Verbost ◽  
S. E. Bonga ◽  
C. M. Wood

The uptake mechanism of Zn2+ through the gill epithelium of freshwater rainbow trout was investigated both in intact animals and in isolated basolateral membranes. Involvement of the apical Ca2+ uptake sites in Zn2+ uptake was examined in vivo by pharmacological manipulation of the apical Ca2+ permeability. The apical entries of Ca2+ and Zn2+, but not Na2+ and Cl-, were inhibited by addition of La to the water. Addition of 1.0 microM La reduced the influxes of Ca2+ and Zn2+ to 22 +/- 3 and 53 +/- 7% (mean +/- SE) of the control value, respectively. Injection of CaCl2 also reduced the branchial influxes of Ca2+ and Zn2+. This treatment decreased the influx of Ca2- to 45 +/- 4% of the control level and the Zn2+ influx to 68 +/- 5%. These results strongly imply that Zn2+ passes across the apical membrane of the chloride cells of the gills via the same pathway as Ca2+. The presence of an active basolateral transporter for Zn2+ was investigated in vitro on isolated basolateral membranes. There was no ATP-dependent or Na2+(-)gradient driven transport of Zn2+ at physiological Zn2+ activities. The same system was used to study potential effects of Zn2+ on the basolateral Ca2+(-)adenosinetri-phosphatase. Zn2+ was found to be a potent blocker of this transporter, causing a mixed inhibitory effect on the ATP driven Ca2+ transport at a free Zn2+ activity of 100 pM.


2003 ◽  
Vol 13 (5) ◽  
pp. 337-345 ◽  
Author(s):  
J. De Vry ◽  
R. Schreiber ◽  
A. Daschke ◽  
K.R. Jentzsch

2007 ◽  
Vol 293 (5) ◽  
pp. R1798-R1808 ◽  
Author(s):  
Prasanth K. Chelikani ◽  
Alvin C. Haver ◽  
Roger D. Reidelberger

Chronic administration of anorexigenic substances to experimental animals by injections or continuous infusion typically produces no effect or a transient reduction in daily food intake and body weight. Our aim was to identify an intermittent dosing strategy for intraperitoneal infusion of salmon calcitonin (sCT), a homolog of amylin that produces a sustained 25–35% reduction in daily food intake and adiposity in diet-induced obese rats. Rats (649 ± 10 g body wt, 27 ± 1% body fat), with intraperitoneal catheters tethered to infusion swivels, had free access to a 45% fat diet. Food intake, body weight, and adiposity during the 7-wk test period were relatively stable in the vehicle-treated rats ( n = 16). None of 10 sCT dosing regimens administered in succession to a second group of rats ( n = 18) produced a sustained 25–35% reduction in daily food intake for >5 days, although body weight and adiposity were reduced by 9% (587 ± 12 vs. 651 ± 14 g) and 22% (20.6 ± 1.2 vs. 26.5 ± 1.1%), respectively, across the 7-wk period. The declining inhibitory effect of sCT on daily food intake with the 6-h interinfusion interval appeared to be due in part to an increase in food intake between infusions. The declining inhibitory effect of sCT on daily food intake with the 2- to 3-h interinfusion interval suggested possible receptor downregulation and tolerance to frequent sCT administration; however, food intake increased dramatically when sCT was discontinued for 1 day after apparent loss of treatment efficacy. Together, these results demonstrate the activation of a potent homeostatic response to increase food intake when sCT reduces food intake and energy reserves in diet-induced obese rats.


2011 ◽  
Vol 107 (11) ◽  
pp. 1714-1725 ◽  
Author(s):  
A. Cláudia Figueiredo-Silva ◽  
Sadasivam Kaushik ◽  
Frédéric Terrier ◽  
Johan W. Schrama ◽  
Françoise Médale ◽  
...  

We examined the long-term effect of feeding coconut oil (CO; rich in lauric acid, C12) on voluntary food intake and nutrient utilisation in rainbow trout (Oncorhynchus mykiss), with particular attention to the metabolic use (storage or oxidation) of ingested medium-chain TAG. Trout were fed for 15 weeks one of the four isoproteic diets containing fish oil (FO) or CO as fat source (FS), incorporated at 5 % (low fat, LF) or 15 % (high fat, HF). Fat level or FS did not modify food intake (g/kg0·8per d), despite higher intestinal cholecystokinin-T mRNA in trout fed the HF-FO diet. The HF diets relative to the LF ones induced higher growth and adiposity, whereas the replacements of FO by CO resulted in similar growth and adiposity. This, together with the substantial retention of C12 (57 % of intake), suggests the relatively low oxidation of ingested C12. The down-regulation of carnitine palmitoyl-transferase-1 (CPT-1) confirms the minor dependency of medium-chain fatty acids (MCFA) on CPT-1 to enter the mitochondria. However, MCFA did not up-regulate mitochondrial oxidation evaluated using hepatic hydroxyacyl-CoA dehydrogenase as a marker, in line with their high retention in body lipids. At a low lipid level, MCFA increased mRNA levels of fatty acid synthase, elongase and stearoyl-CoA desaturase in liver, showing the hepatic activation of fatty acid synthesis pathways by MCFA, reflected by increased 16 : 0, 18 : 0, 16 : 1, 18 : 1 body levels. The high capacity of trout to incorporate and transform C12, rather than to readily oxidise C12, contrasts with data in mammals and may explain the absence of a satiating effect of CO in rainbow trout.


Sign in / Sign up

Export Citation Format

Share Document