Lipid content and fatty acid profile during lake whitefish embryonic development at different incubation temperatures

Author(s):  
Casey A. Mueller ◽  
Liam Doyle ◽  
John Eme ◽  
Richard G. Manzon ◽  
Christopher M. Somers ◽  
...  
Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3582 ◽  
Author(s):  
Izabela Krzemińska ◽  
Marta Oleszek ◽  
Dariusz Wiącek

In recent years, there has been growing interest in the biomass of unicellular algae as a source of valuable metabolites. The main limitations in the commercial application of microbial biomass are associated with the costs of production thereof. Maize silage is one of the main substrates used in biogas plants in Europe. The effects of sterilized agricultural liquid digestate (LD) from methane fermentation of maize silage on the growth rates, macro and micronutrient removal efficiency, lipid content, and fatty acid profile in Auxenochlorella protothecoides were investigated. The results indicate that A. prothecoides can proliferate and accumulate lipids with simultaneous reduction of nutrients in the 1:20 diluted liquid digestate. The rate of nitrogen and phosphorus removal from the liquid digestate was 79.45% and 78.4%, respectively. Cells growing in diluted liquid digestate exhibited the maximum lipid content, i.e., 44.65%. The fatty acid profile of A. prothecoides shows a decrease in the content of linolenic acid by 20.87% and an increase in oleic acid by 32.16% in the LD, compared with the control. The liquid digestate changed the content of monounsaturated fatty acids and polyunsaturated fatty acids. The cells of A. protothecoides growing in the liquid digestate were characterized by lower PUFA content and higher MUFA levels.


2009 ◽  
Vol 21 (1) ◽  
pp. 154 ◽  
Author(s):  
M. Barcelo-Fimbres ◽  
G. E. Seidel

The objective of this experiment was to evaluate lipid accumulation and embryonic development of bovine morulae treated with different chemicals. A total of 2619 slaughterhouse oocytes from heifers and mature cows were matured in CDM medium (similar to SOF) plus 0.5% fatty acid-free BSA and hormones (M-CDM) for 23 h at 38.5°C in 5% CO2 in air. Frozen–thawed sperm were centrifuged through a Percoll gradient and co-cultured with matured oocytes for 18 h in F-CDM (CDM+heparin). Zygotes were cultured at 38.5°C in 5% CO2/5% O2/90% N2 in CDM-1 with nonessential amino acids, 10 μm EDTA, 0.5% fatty acid free BSA, and 0.5 mm fructose. After 60 h, resulting 8-cell embryos were cultured 120 h in CDM-2 (CDM-1+essential amino acids and 2 mm fructose). A factorial design was used with 7 treatments, 2 ovary sources (cows v. heifers), and 3 bulls (A, B and C) replicated twice for each bull (6 replicates). At Day 2.5 embryo cleavage and 8-cell rates were evaluated, and on Day 6 a total of 755 morulae were randomly assigned to the 7 treatments (control, 2 and 8 mm caffeine, 1 and 4 μm epinephrine, and 10 and 40 μm forskolin). To quantify lipid accumulation, Day 7 blastocysts were fixed and stained with 1 μg mL–1 Nile red dye, after which a digital photograph of the equatorial part of the embryo (including the inner cell mass) was taken at 200×, and fluorescence intensity was measured with Image Pro software from 0 to 255 shades for each pixel (0 = no lipids; 255 = greatest lipid accumulation), as previously reported (Biol. Reprod. 2007 (Suppl. 1), 87–88). Data were analyzed by ANOVA. No differences in cleavage rates (75 v. 68 ± 3.6%) or eight cell rates (61 ± v. 57 ± 2.8%) were found for heifer v. cow oocytes (P > 0.1); however, blastocyst rates per oocyte and per 8-cell embryo were greater for cows than heifers (20 v. 10 ± 2.1%, and 68 v. 35 ± 3.8%, respectively; P < 0.05). Treatments: 2 and 8 mm caffeine produced fewer blastocysts per morula than 1 and 4 μm epinephrine, 10 and 40 μm forskolin and the control (39, 5 v. 54, 49, 48, 54 and 52 ± 5.8%; respectively) (P < 0.01). More lipid content was found in whole embryos and trophoblast of heifer-derived than cow blastocysts (P < 0.05), and forskolin resulted in less lipid content than control, caffeine- and epinephrine-treated morulae in whole embryos, embryonic mass and trophoblasts (P < 0.05; Table 1). In conclusion, mature cows were a better source of oocytes than feedlot heifers for embryonic development. High doses of caffeine were detrimental to embryos, and the addition of the lypolitic agent forskolin reduced lipid content relative to control, caffeine and epinephrine-treated embryos. Table 1.Main effect treatment means of lipid content (arbitrary fluorescence units)


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Volha Shapaval ◽  
Jule Brandenburg ◽  
Johanna Blomqvist ◽  
Valeria Tafintseva ◽  
Volkmar Passoth ◽  
...  

2017 ◽  
Vol 98 (8) ◽  
pp. 1977-1990 ◽  
Author(s):  
Miguel Bascur ◽  
Fabián Guzmán ◽  
Sergio Mora ◽  
Pepe Espinoza ◽  
Ángel Urzúa

Pleuroncodes monodon, an important fishery resource and key species in the Humboldt Current Large Marine ecosystem, has a prolonged reproductive period from winter until end of summer, and during this time females incubating their embryos are exposed to seasonal variation in food availability and in temperature. Additionally, in order to ensure successful reproduction and survival of embryos, changes occur in the main internal reserves and/or sources of energy of P. monodon. The aim of this study was to determine the extent of seasonal variation (winter vs summer) in the lipid content and fatty acid composition of ovigerous females and their embryos. The results show that a higher percentage of saturated and polyunsaturated fatty acids are found in females in winter. Similarly, the composition of fatty acids in embryos found here indicates that winter embryos have more saturated fatty acids and essential fatty acids (C18:2n6cis, C18:3n6 and C22:6n3) than do summer embryos. According to PCA analysis of fatty acid profile, samples from summer may be distinguished into two isolated groups with conspicuous variations in fatty acids profile of embryo and hepatopancreas. While in winter, the opposite pattern occurs in the fatty acid profile of embryo and hepatopancreas. These variations may be related to relevant physiological processes (reproduction and growth) and of their ontogeny (development and survival of offspring). Seasonal variation in the lipid content and composition of fatty acids of P. monodon could directly impact this species’ reproduction and survival and subsequently could have consequences on the food web and fishery exploitation.


2015 ◽  
Vol 196 ◽  
pp. 72-77 ◽  
Author(s):  
Izabela Krzemińska ◽  
Agata Piasecka ◽  
Artur Nosalewicz ◽  
Diana Simionato ◽  
Jacek Wawrzykowski

2018 ◽  
Vol 84 ◽  
pp. 44-48 ◽  
Author(s):  
Lenka Kouřimská ◽  
Monika Sabolová ◽  
Pavel Horčička ◽  
Stanislav Rys ◽  
Matěj Božik

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 78
Author(s):  
Ao Yang ◽  
Cong Zhang ◽  
Beiyu Zhang ◽  
Zhiyun Wang ◽  
Luoyi Zhu ◽  
...  

Antinutrients, such as cyclopropene fatty acids (CPFAs) and free gossypol (FG), present together in cottonseed have caused numerous adverse effects on liver health and egg quality of laying hens, which are both likely to be related to a disturbance in lipid metabolism. This experiment employed a 3 × 3 factorial arrangement using corn–soybean-meal-based diets supplemented with different levels of cottonseed oil (0%, 2%, or 4% CSO) containing CPFAs and cottonseed meal (0%, 6%, or 12% CSM) containing FG to elucidate the effects of them or their interaction on fatty acid profile, lipid content, and liver health of laying hens. An overall increase in fatty acid saturation and an overall significant decrease (p < 0.05) in monounsaturated fatty acids (MUFAs) were shown in the livers of hens fed diets with either 2% or 4% CSO. Meanwhile, the concentration of liver cholesterol, serum cholesterol, and serum LDL-c of hens fed a diet supplemented with a high level of CSO (4%) were noticeably increased (p < 0.05). Even though the supplementation of 4% CSO in diets aroused beneficial influences on liver function, a high level of CSO inclusion in laying hens’ diets is not recommended due to its hypercholesterolemia effect. In conclusion, supplementation of CSO, which contains 0.20% CPFAs, was the primary cause of alteration in fatty acid composition and cholesterol content in hens, while no interaction between CSM and CSO nor CSM effect was found for lipid profile and liver health in laying hen.


Sign in / Sign up

Export Citation Format

Share Document