A study on pore development mechanism of activated carbons from polymeric precursor: Effects of carbonization temperature and nano crystallite formation

2019 ◽  
Vol 377 ◽  
pp. 120836 ◽  
Author(s):  
Hye-Min Lee ◽  
Dong-Cheol Chung ◽  
Sang-Chul Jung ◽  
Kay-Hyeok An ◽  
Soo-Jin Park ◽  
...  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Geni Juma ◽  
Revocatus Machunda ◽  
Tatiana Pogrebnaya

In this study, sweet potato leaf activated carbon (SpLAC) was prepared by the chemical activation method using KOH and applied as an adsorbent for H2S removal from biogas. The study focused on the understanding of the effect of carbonization temperature (Tc), varying KOH : C activation ratio, flow rate (FR) of biogas, and mass of SpLAC on sample adsorption capacity. The BET analysis was performed for both fresh and spent activated carbons as well as for carbonized samples, which were not activated; also, the activated carbon was characterized by XRF and CHNS techniques. The results showed that removal efficiency (RE) of the SpLAC increased with increase carbonization temperature from 600 to 800°C and the mass of sorbent from 0.4 g to 1.0 g. The optimal test conditions were determined: 1.0 g of sorbent with a KOH : C ratio of 1 : 1, Tc=800°C, and FR=0.02 m3/h which resulted in a sorption capacity of about 3.7 g S/100 g of the SpLAC. Our findings corroborated that H2S removal was contributed not only by the adsorption process with the pore available but also by the presence of iron in the sample that reacted with H2S. Therefore, upon successful H2S sorption, SpLAC is suggested as a viable adsorbent for H2S removal from biogas.


2019 ◽  
Vol 2 (3) ◽  
pp. 1205-1209
Author(s):  
Hasan Sayğılı

The influence of carbonization temperature (CT) on pore properties of the prepared activated carbon using lentil processing waste product (LWP) impregnated with potassium carbonate was studied. Activated carbons (ACs) were obtained by impregnation with 3:1 ratio (w/w) K2CO3/LWP under different carbonization temperatures at 600, 700, 800 and 900 oC for 1h. Activation at low temperature represented that micropores were developed first and then mesoporosity developed, enhanced up to 800 oC and then started to decrease due to possible shrinking of pores. The optimum temperature for LWP was found to be around 800 oC on the basis of total pore volume and the Brunauer-Emmett-Teller (BET) surface area. The optimum LWPAC sample was found with a CT of 800 oC, which gives the highest BET surface area and pore volume of 1875 m2/g and 0.995 cm3/g, respectively.


2017 ◽  
Vol 12 (1) ◽  
pp. 169-174 ◽  
Author(s):  
Rajeshwar Man Shrestha

The adsorption of Methylene blue by the activated carbons prepared from a locally available material Lapsi Seed Stone has been studied. Various activated carbons were prepared by varying the parameters such as ratio of Lapsi seed stone particles to Phosphoric acid, carbonization temperature and carbonization time. Determination of Methylene blue numbers of the activated carbons was done by single point method by batch mode. Methylene blue number is found to be affected by the various preparation conditions like carbonization temperature, carbonization time, ratio of activating agent and Lapsi seed stone particles and the concentration of phosphoric acid. The optimum conditions for the preparation of activated carbon are found to be carbonization temperature 400°C for 4 hours at the ratio of 1:1 Lapsi seed stone particles and Phosphoric acid.Journal of the Institute of Engineering, 2016, 12(1): 169-174


2020 ◽  
Vol 15 (1) ◽  
pp. 144-149
Author(s):  
Abhimanyu Jha ◽  
Aabhash K. Mallick ◽  
Rajeshwar M. Shrestha ◽  
Rinita Rajbhandari Joshi

In this work, nanoporous activated carbons from Peach Stone powder was achieved using phosphoric acid as an activating agent and carbonization has been conducted at temperatures ranging from 400oC to 700oC using Nitrogen as inert gas in a tubular furnace, to understand the effect of the adsorption capacity with variation in temperature. Evaluation of microporosity of each of these specimens was performed by Iodine Number technique, of which the results showed a maximum amount of micropores in the carbon at the carbonization temperature of 500oC. The morphology of the carbon samples at two extreme temperatures of 400oC and 700oC was studied using FE-SEM images, which demonstrated large amount of nanoporous in the carbon surfaces at the higher temperature. Raman Spectroscopy outcomes delineate the similar amorphous nature of the carbonaceous specimen at these temperatures with both G band and D band. These results indicate a potential to develop a good adsorbent material applicable for water purification.


2018 ◽  
Vol 13 (1) ◽  
pp. 139-144
Author(s):  
Rajeshwar Man Shrestha

 The adsorption of Iodine by the activated carbons prepared from a locally available material Lapsi Seed Stone has been studied. Various activated carbons were prepared by varying the parameters such as ratio of Lapsi Seed Stone particles to Phosphoric acid, percentage of phosphoric acid concentration, carbonization temperature and carbonization time. Determination of Iodine numbers of the activated carbons was done by the standard method. The effect of various preparation conditions on Iodine number of different activated carbons is also investigated. The optimum conditions for the preparation of activated carbon are found to be 400 ° C -the carbonization temperature, 4 hours - the carbonization time, 1:1- the ratio of Lapsi Seed Stone particles and Phosphoric acid and 50 %- the percentage of phosphoric acid concentration.Journal of the Institute of Engineering, 2017, 13(1): 139-144


1997 ◽  
Vol 32 (6) ◽  
pp. 1115-1126 ◽  
Author(s):  
N. Tancredi ◽  
T. Cordero ◽  
J. Rodríguez-Mirasol ◽  
J. J. Rodríguez

2013 ◽  
Vol 701 ◽  
pp. 408-411
Author(s):  
Norlia Mohamad Ibrahim ◽  
Siti Fatimah Zahra Mohd Sarif ◽  
Roshazita Che Amat ◽  
Shamshinar Salehuddin ◽  
Nur Liza Rahim

Activated carbons were prepared from rambutan seed with impregnation of zinc chloride as dehydrating agent. In order to find its characteristics, different zinc chloride to rambutan seed ratio (0.5 and 2) and activation temperature (450 and 650 °C) was employed. The carbonization occurred in a tube furnace with flow of nitrogen gas at 0.5 L/min. The results showed that at higher impregnation ratio and carbonization temperature produced a wider BET surface area of activated carbon that was 9.8761 m2/g. Total pore volume also increased with increases of these two factors. However activation yield was decreased with increasing of carbonization temperature.


Neft i gaz ◽  
2020 ◽  
Vol 3-4 (117-1118) ◽  
pp. 169-179
Author(s):  
N.O. APPAZOV¹, ◽  
◽  
B.M. BAZARBAYEV¹, ◽  
N.I. AKYLBEKOV¹*, ◽  
R.U. ZHAPPARBERGENOV¹, ◽  
...  

Co-thermolysis of rice husk and straw with oil sludge was carried out in order to obtain a widely used adsorbent – activated carbon. Carbonization was carried out in a tubular furnace made of stainless steel at a temperature of 500°C and the activation of carbonization was carried out with water vapor at a temperature of 800°C. The influence of the ratio of the initial components of the raw material (husk / straw:oil sludge) on the properties of the product was studied. The ЭКОЛОГИЯ 172 НЕФТЬ И ГАЗ 2020. 3–4 (117–118) optimal ratio for co-thermolysis of the husk: oil sludge is 9:1 (by weight), respectively. The optimal condition for the production of activated carbon by co-thermolysis of rice straw and oil sludge is a carbonization temperature of 500°C with a duration of 100 min, activation of the carbonizate at a temperature of 850°C and with a ratio of water:carbonizate = 2:1. Indices such as iodine adsorption activity, total pore volume in water, mass fraction of moisture, and bulk density were studied. The microstructures of the obtained activated carbons were studied on a scanning scanning electron microscope. Activated carbon obtained by the joint processing of rice husk and oil sludge in a ratio of 9:1 corresponds to activated carbon brand DAK. The resulting product based on rice straw and oil sludge corresponds to the activated carbons BAU-MF, BAU-A and BAU-Ats.


Sign in / Sign up

Export Citation Format

Share Document