Characterization of Rambutan Seed (Nephelium lappaceum) as Natural Adsorbent for Wastewater Treatment

2013 ◽  
Vol 701 ◽  
pp. 408-411
Author(s):  
Norlia Mohamad Ibrahim ◽  
Siti Fatimah Zahra Mohd Sarif ◽  
Roshazita Che Amat ◽  
Shamshinar Salehuddin ◽  
Nur Liza Rahim

Activated carbons were prepared from rambutan seed with impregnation of zinc chloride as dehydrating agent. In order to find its characteristics, different zinc chloride to rambutan seed ratio (0.5 and 2) and activation temperature (450 and 650 °C) was employed. The carbonization occurred in a tube furnace with flow of nitrogen gas at 0.5 L/min. The results showed that at higher impregnation ratio and carbonization temperature produced a wider BET surface area of activated carbon that was 9.8761 m2/g. Total pore volume also increased with increases of these two factors. However activation yield was decreased with increasing of carbonization temperature.

2019 ◽  
Vol 2 (3) ◽  
pp. 1205-1209
Author(s):  
Hasan Sayğılı

The influence of carbonization temperature (CT) on pore properties of the prepared activated carbon using lentil processing waste product (LWP) impregnated with potassium carbonate was studied. Activated carbons (ACs) were obtained by impregnation with 3:1 ratio (w/w) K2CO3/LWP under different carbonization temperatures at 600, 700, 800 and 900 oC for 1h. Activation at low temperature represented that micropores were developed first and then mesoporosity developed, enhanced up to 800 oC and then started to decrease due to possible shrinking of pores. The optimum temperature for LWP was found to be around 800 oC on the basis of total pore volume and the Brunauer-Emmett-Teller (BET) surface area. The optimum LWPAC sample was found with a CT of 800 oC, which gives the highest BET surface area and pore volume of 1875 m2/g and 0.995 cm3/g, respectively.


BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 614-621
Author(s):  
Qingsong Ji ◽  
Haichao Li ◽  
Jingjing Zhang

The object of this study was to prepare activated carbons containing nitrogenous functional groups by a chemical method from nitrogen-containing raw materials. Fish (Ctenopharyngodon idellus) scales were impregnated with phosphoric acid (H3PO4) and activated at varied temperatures. The adsorption ability, structural characteristics, surface chemistry, and morphology of the activated carbons were characterized by methylene blue and iodine values, nitrogen adsorption, the Boehm method, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The total alkaline groups content of the activated carbon produced from fish scales was 0.4330 mmol/g, the total acidic groups was 1.68 mmol/g, the Brunauer–Emmett–Teller (BET) surface area was 501 cm2/g, and the total pore volume was 0.284 cm3/g. The average pore diameter was 1.94 nm under an activation temperature of 550 °C, an activation time of 1 h, and an impregnation ratio of 2. As a result of this study, nitrogenous functional groups that contained acid-base amphoteric adsorbent were produced.


2012 ◽  
Vol 599 ◽  
pp. 614-617 ◽  
Author(s):  
Zi Jun Tang ◽  
Chao Ping Cen ◽  
Ping Fang ◽  
Yang Ming Liang

In this study, a sewage sludge-base activated carbon (SSAC) was prepared by means of ZnCl2 chemical activation-pyrolysis-carbonization. Different factors such as activated temperature, activators, additives, sludge/activation solution ratio, activated time and other factors which affecting SSAC characteristics were studied to obtain the optimal preparation conditions. The result shows that when using 3mol/L zinc chloride with the ratio of zinc chloride to sulfuric acid as 10:1(v/v), activated at 550°C with the ratio of sludge to activation solution as 1:4(w/v) for 1 hour of pyrolysis and the rate of N2 was set at 0.5L/min, the BET surface area, total pore volume and average pore diameter of the SSAC was 469.80m2/g, 0.16cm3/g and 2.60nm respectively. Using SSAC to treat simulating wastewater containing 100mg(Ni2+)/L, the removal rate of Ni2+ was 20.59% with the adsorption capacity of 10.57mg/g. When the pH>10.5 the removal efficiency approached 100%.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 257
Author(s):  
Jie Ren ◽  
Nanwei Chen ◽  
Li Wan ◽  
Guojian Li ◽  
Tao Chen ◽  
...  

In this study, a new method for economical utilization of coffee grounds was developed and tested. The resulting materials were characterized by proximate and elemental analyses, thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and N2 adsorption–desorption at 77 K. The experimental data show bio-oil yields reaching 42.3%. The optimal activated carbon was obtained under vacuum pyrolysis self-activation at an operating temperature of 450 °C, an activation temperature of 600 °C, an activation time of 30 min, and an impregnation ratio with phosphoric acid of 150 wt.%. Under these conditions, the yield of activated carbon reached 27.4% with a BET surface area of 1420 m2·g−1, an average pore size of 2.1 nm, a total pore volume of 0.747 cm3·g−1, and a t-Plot micropore volume of 0.428 cm3·g−1. In addition, the surface of activated carbon looked relatively rough, containing mesopores and micropores with large amounts of corrosion pits.


2015 ◽  
Vol 74 (11) ◽  
Author(s):  
Riry Wirasnita ◽  
Tony Hadibarata ◽  
Abdull Rahim Mohd Yusoff ◽  
Zainab Mat Lazim

An oil palm empty fruit bunch-derived activated carbon has been successfully produced by chemical activation with zinc chloride and without chemical activation. The preparation was conducted in the tube furnace at 500oC for 1 h. The surface structure and active sites of activated carbons were characterized by means of Fourier transform infrared spectrometry and field emission scanning electron microscopy. The proximate analysis including moisture content, ash content, bulk density, pH, and pH at zero charge was conducted to identify the psychochemical properties of the adsorbent. The results showed that the zinc chloride-activated carbon has better characteristics compared to the carbon without chemical activation.  


2014 ◽  
Vol 1053 ◽  
pp. 303-310 ◽  
Author(s):  
Mian Wu Meng ◽  
Cong Liang Qi ◽  
Qing Ye Liu ◽  
Liang Lv ◽  
Hao Ai ◽  
...  

A three-factor-three-level experiment was developed by the central composite design (CCD) and Response surface methodology to discuss the effects of concentration of K2CO3, activation temperature and time on the adsorption capacity of the activated carbon (AC) derived from the rice husk and to identify the key preparation parameters. The performance of the AC was characterized by nitrogen adsorption isotherm as Brunauer–Emmett–Teller (BET) and scanning electron microscope (SEM), respectively. The optimal parameters were obtained: Rice husk was soaked in K2CO3 solution (2.32 mol/L) with an impregnation ratio (rice husk: K2CO3=1:3) (wt. %), activated at 1239 K for 0.48 h. The results showed that iodine adsorption capacity of the AC was 1268.52 mg/g, the error between the models predicted (1356.98 mg/g) was only 6.2%. The AC has a large apparent surface area (SBET = 1312 m2/g), total pore volume (0.78 cm3/g) and average pore diameter (11.92 Å).


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Daouda Kouotou ◽  
Horace Ngomo Manga ◽  
Abdelaziz Baçaoui ◽  
Abdelrani Yaacoubi ◽  
Joseph Ketcha Mbadcam

In this study, activated carbons were prepared from oil palm shells by physicochemical activation. The methodology of experimental design was used to optimize the preparation conditions. The influences of the impregnation ratio (0.6–3.4) and the activation temperature between 601°C and 799°C on the following three responses: activated carbon yield (R/AC-H3PO4), the iodine adsorption (I2/AC-H3PO4), and the methylene blue adsorption (MB/AC-H3PO4) results were investigated using analysis of variance (ANOVA) to identify the significant parameters. Under the experimental conditions investigated, the activation temperature of 770°C and impregnation ratio of 2/1 leading to the R/AC-H3PO4of 52.10%, theI2/AC-H3PO4of 697.86 mg/g, and the MB/AC-H3PO4of 346.25 mg/g were found to be optimum conditions for producing activated carbon with well compromise of desirability. The two factors had both synergetic and antagonistic effects on the three responses studied. The micrographs of activated carbons examined with scanning electron microscopy revealed that the activated carbons were found to be mainly microporous and mesoporous.


Holzforschung ◽  
2015 ◽  
Vol 69 (6) ◽  
pp. 777-784 ◽  
Author(s):  
Galina Dobele ◽  
Aleksandrs Volperts ◽  
Galina Telysheva ◽  
Aivars Zhurinsh ◽  
Daria Vervikishko ◽  
...  

Abstract The thermocatalytical synthesis conditions required for the activation of wood charcoal with NaOH in terms of the formation of pores in its structure were investigated. The present study was conducted to explore the potential application of activated carbons as electrodes in supercapacitors with organic electrolyte. The total pore volume and micro- and mesopore ratio were controlled by the activation temperature and alkali addition rate. The working characteristics of carbon electrodes (e.g., specific capacity and ohmic losses) in supercapacitors are strongly influenced by the properties of the pores in their structures. Herein, the optimal ratio of raw material to activator and activation temperature are established: an increase in the ratio of NaOH to carbonizate rate by a factor of 2 and setting the synthesis temperature at 700°C positively influence the electrochemical characteristics of supercapacitors and provide them with specific capacities of up to 160 F g-1.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 450-463
Author(s):  
Xiya Li ◽  
Jieqiong Qiu ◽  
Yiqi Hu ◽  
Xiaoyuan Ren ◽  
Lu He ◽  
...  

The production of low-cost biologically activated carbons (BACs) is urgent need of environmental protection and ecological sustainability. Hence, walnut shells were treated by traditional pyrolysis, direct KOH impregnation and combined activation composed of hydrothermal carbonization and two-step H3PO4- and pyrolysis-activation process to obtain porous carbon with high adsorption capacity. It was found that the best adsorption capacity for iodine and organic dye methylene blue (MB) can be obtained using the KOH impregnation at impregnation ratio of 1:1 or combined activation comprising of 2 h H3PO4 activation and 1 h pyrolysis activation at 1000°C. The produced KOH, H3PO4/pyrolysis activated BACs at the optimum conditions are superior to that of commercial ACs, 9.4 and 1.3 times for MB removal, 4 and 4.5 times for iodine number respectively. Characterization results demonstrated their porous structure with very good textural properties such as high BET surface area (1689.1 m2/g, 1545.3 m2/g) and high total pore volume (0.94 cm3/g, 0.96 cm3/g). The N2 adsorption-desorption isotherm of H3PO4/pyrolysis activated hydrochar suggested the co-existence of micro and meso-pores. Moreover, they are more effective for the removal of Fe(III) and Cr(VI) from aqueous solution than the commercial AC, suggesting a promising application in the field of water treatment.


2009 ◽  
Vol 59 (12) ◽  
pp. 2387-2394 ◽  
Author(s):  
X. Wang ◽  
N. Zhu ◽  
J. Xu ◽  
B. Yin

An improved method for preparing activated carbons from wet waste activated sludge (WAS) by direct chemical activation was studied in this paper. The effects of processing parameters on iodine adsorption capacity of the product were investigated. Results show that sludge-based activated carbon prepared with KOH had a larger iodine value than those activated with ZnCl2 and KCl. The maximum iodine value was observed at the KOH concentration of 0.50 M. Increasing the impregnation time from 10 to 20 h resulted in a 20% increase in the iodine value. The highest iodine value was obtained at the activation temperature of 600°C and holding time of 1 h. Sludge water content had insignificant effects on the iodine value of products. Raw WAS with a water content of 93.2% can be converted into an activated carbon with a high specific surface area of 737.6 m2 g−1 and iodine value of 864.8 mgg−1 under optimum experimental conditions. Other physical properties such as total pore volume, micropore volume and mean pore diameter of the product were also reported and compared with those of commercial activated carbon.


Sign in / Sign up

Export Citation Format

Share Document