Injectable self-healing CuS nanoparticle complex hydrogels with antibacterial, anti-cancer, and wound healing properties

2021 ◽  
Vol 409 ◽  
pp. 128224
Author(s):  
Liangqin Zhou ◽  
Fan Chen ◽  
Zishuo Hou ◽  
Yuanwei Chen ◽  
Xianglin Luo
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jiahui He ◽  
Zixi Zhang ◽  
Yutong Yang ◽  
Fenggang Ren ◽  
Jipeng Li ◽  
...  

AbstractEndoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) are well-established therapeutics for gastrointestinal neoplasias, but complications after EMR/ESD, including bleeding and perforation, result in additional treatment morbidity and even threaten the lives of patients. Thus, designing biomaterials to treat gastric bleeding and wound healing after endoscopic treatment is highly desired and remains a challenge. Herein, a series of injectable pH-responsive self-healing adhesive hydrogels based on acryloyl-6-aminocaproic acid (AA) and AA-g-N-hydroxysuccinimide (AA-NHS) were developed, and their great potential as endoscopic sprayable bioadhesive materials to efficiently stop hemorrhage and promote the wound healing process was further demonstrated in a swine gastric hemorrhage/wound model. The hydrogels showed a suitable gelation time, an autonomous and efficient self-healing capacity, hemostatic properties, and good biocompatibility. With the introduction of AA-NHS as a micro-cross-linker, the hydrogels exhibited enhanced adhesive strength. A swine gastric hemorrhage in vivo model demonstrated that the hydrogels showed good hemostatic performance by stopping acute arterial bleeding and preventing delayed bleeding. A gastric wound model indicated that the hydrogels showed excellent treatment effects with significantly enhanced wound healing with type I collagen deposition, α-SMA expression, and blood vessel formation. These injectable self-healing adhesive hydrogels exhibited great potential to treat gastric wounds after endoscopic treatment.


2021 ◽  
Vol 43 (1) ◽  
pp. 127-141
Author(s):  
Matúš Čoma ◽  
Veronika Lachová ◽  
Petra Mitrengová ◽  
Peter Gál

Estrogen deprivation is one of the major factors responsible for many age-related processes including poor wound healing in postmenopausal women. However, the reported side-effects of estrogen replacement therapy (ERT) have precluded broad clinical administration. Therefore, selective estrogen receptor modulators (SERMs) have been developed to overcome the detrimental side effects of ERT on breast and/or uterine tissues. The use of natural products isolated from plants (e.g., soy) may represent a promising source of biologically active compounds (e.g., genistein) as efficient alternatives to conventional treatment. Genistein as natural SERM has the unique ability to selectively act as agonist or antagonist in a tissue-specific manner, i.e., it improves skin repair and simultaneously exerts anti-cancer and chemopreventive properties. Hence, we present here a wound healing phases-based review of the most studied naturally occurring SERM.


2021 ◽  
Vol 22 (4) ◽  
pp. 1700
Author(s):  
Jihye Seo ◽  
Jain Ha ◽  
Eunjeong Kang ◽  
Haelim Yoon ◽  
Sewoong Lee ◽  
...  

Hepatocellular carcinoma (HCC), the most common type of liver cancer, is a leading cause of cancer-related deaths. As HCC has a high mortality rate and its incidence is increasing worldwide, understanding and treating HCC are crucial for resolving major public health concerns. In the present study, wound healing screening assays were performed using natural product libraries to identify natural chemicals that can inhibit cancer cell migration. Glaucarubinone (GCB) showed a high potential for inhibiting cell migration. The anti-cancer effects of GCB were evaluated using the HCC cell line, Huh7. GCB showed anti-cancer effects, as verified by wound healing, cell migration, invasion, colony formation, and three-dimensional spheroid invasion assays. In addition, cells treated with GCB showed suppressed matrix metalloproteinase activities. Immunoblotting analyses of intracellular signaling pathways revealed that GCB regulated the levels of Twist1, a crucial transcription factor associated with epithelial-to-mesenchymal transition, and mitogen-activated protein kinase. The invasive ability of cancer cells was found to be decreased by the regulation of Twist1 protein levels. Furthermore, GCB downregulated phosphorylation of extracellular signal-regulated kinase. These results indicate that GCB exhibits anti-metastatic properties in Huh7 cells, suggesting that it could be used to treat HCC.


Author(s):  
Hongyun Xuan ◽  
Shuyuan Wu ◽  
Simiao Fei ◽  
Biyun Li ◽  
Yumin Yang ◽  
...  
Keyword(s):  

2021 ◽  
Vol 11 (15) ◽  
pp. 6945
Author(s):  
Chukwuma O. Agubata ◽  
Cynthia C. Mbaoji ◽  
Ifeanyi T. Nzekwe ◽  
César Saldías ◽  
David Díaz Díaz

In this work, a biohydrogel based on alginate and dynamic covalent B-O bonds, and derived composites, has been evaluated for wound healing applications. In particular, a phenylboronic acid–alginate (PBA-Alg) complex was synthesized by coupling 3-aminophenylboronic acid onto alginate, and used to prepare varied concentrations of hydrogels and silicate-based nanocomposites in PBS. The resulting hydrogels were characterized in terms of interfacial tension, moisture uptake and loss, interaction with fresh acid-soluble collagen, self-healing ability, effects on blood clotting and wound healing. The interfacial tension between the hydrogels and biorelevant fluids was low and moisture loss of 55%–60% was evident without uptake from the environment. The components of the hydrogels and their mixtures with collagen were found to be compatible. These hydrogels showed efficient self-healing and thixotropic behavior, and the animals in the treatment groups displayed blood clotting times between 9.1 min and 10.7 min. In contrast, the composites showed much longer or shorter clotting times depending on the silicate content. A significant improvement in wound healing was observed in 3% w/v PBA-Alg formulations. Overall, the PBA-Alg hydrogels exhibit self-healing dynamic covalent interactions and may be useful in dressings for incision wounds.


2021 ◽  
Vol 12 (4) ◽  
pp. 166-169
Author(s):  
Mahaveer Sing ◽  
Sravan P Kumar ◽  
Birendra Shrivastava ◽  
Pamula B Reddy ◽  
Suma Rohilla

Ipomoea carnea Jacq. grows as wild plant in India. It is identified as a useful material for several applications including medicinal purposes. Different extracts of Ipomoea carnea plant possess anti-bacterial, anti-fungal, antioxidant, antimicrobial, anti-cancer, anti-convulsant, immune modulatory, antidiabetic, hepatoprotective, anti-inflammatory, anxiolytic, sedative, cardiovascular, inhibition and wound healing activities. However, some toxicological effects have been also reported. In this review the potential of phytochemical, pharmacological and other activities of Ipomoea carnea are discussed.


2021 ◽  
Vol 30 (Sup9a) ◽  
pp. IVi-IVx
Author(s):  
Chukwuma O Agubata ◽  
Mary A Mbah ◽  
Paul A Akpa ◽  
Godwin Ugwu

Aim: Self-healing, swellable and biodegradable polymers are vital materials that may facilitate the different stages of wound healing. The aim of this research was to prepare wound healing films using self-healing polyvinyl alcohol (PVA), swellable hydroxypropyl methylcellulose (HPMC), biodegradable polyglycolic acid (PGA) sutures and ciprofloxacin antibiotic for improved treatment outcome. Methods: Films were formulated through aqueous-based mixing of varying amounts of polyvinyl alcohol (10–20% weight/weight (w/w)) and hydroxypropyl methylcellulose (0.5, 1% w/w) with fixed quantities of ciprofloxacin. PGA sutures were placed as grids within the wet mixtures of the polymers and ciprofloxacin, and thereafter products were air dried. The formulated films were evaluated for swelling ratio, breaking elongation, folding endurance, moisture uptake and loss, compatibility and in vitro antibiotic release. Furthermore, in vivo wound healing was studied using excision model and histopathological examinations. Results: Swelling ratios were above 1.0 and the films were minimally stretchable, with folding endurance greater than 500. Films were stable while moisture uptake and loss were observed to be less than 30%. Among the optimised hydrogel batches, those containing 10% w/w PVA and 1% w/w HPMC with no PGA showed the highest drug release of 73%, whereas the batches with higher PGA content showed higher percentage wound size reduction with minimal scar. The completeness of wound healing with batches containing PVA, HPMC, ciprofloxacin and PGA, along with the standard, is evident considering the massive cornification, regeneration of the epithelial front and stratum spinosum. Conclusion: The findings show that polymer-based multifunctional composite films are suitable for use as dressings for improved wound healing.


Theranostics ◽  
2021 ◽  
Vol 11 (20) ◽  
pp. 10174-10175
Author(s):  
Chenggui Wang ◽  
Min Wang ◽  
Tianzhen Xu ◽  
Xingxing Zhang ◽  
Cai Lin ◽  
...  

2022 ◽  
pp. 431-453
Author(s):  
Mohammed Rahmatullah ◽  
Khoshnur Jannat ◽  
Gerald R. Reeck ◽  
Rownak Jahan ◽  
Taufiq Rahman ◽  
...  

Cyperus rotundus (nut grass in English) is a perennial erect sedge plant and is distributed in over 90 countries of the world, where it has been mostly classified as a highly invasive weed. Despite this classification, the plant has been considered from traditional times to be medicinally important. The traditional uses of the plant in various countries include uses against various gastrointestinal tract disorders, skin diseases, leprosy, fever, and neurological disorders. Evaluation of the plant and especially its rhizomes in a scientific manner has revealed the presence of numerous phytochemicals and wide-ranging pharmacological activities, which include anti-microbial, gastrointestinal, wound healing, anti-diabetic, anti-cancer, anti-malarial, anti-obesity, hepatoprotective, and anti-pyretic activity. The scientific validation of a number of traditional uses strongly indicates that the plant may prove useful in the discovery of a number of lead compounds and novel drugs.


Sign in / Sign up

Export Citation Format

Share Document