Multi-objective optimization of heat transfer in microchannel for non-Newtonian fluid

2021 ◽  
Vol 412 ◽  
pp. 128594
Author(s):  
Xin Dong ◽  
Xiaomin Liu
2019 ◽  
Vol 116 ◽  
pp. 00062 ◽  
Author(s):  
Parth Prajapati ◽  
Vivek Patel

The present work deals with multi objective optimization of nanofluid based Organic Rankine Cycle (ORC) to utilise waste heat energy. Working fluid considered for the study is R245ca for its good thermodynamic properties and lower Global Warming Potential (GWP) compared to the conventional fluids used in the waste heat recovery system. Heat Transfer Search (HTS) algorithm is used to optimize the objective functions which tends to maximize thermal efficiency and minimize Levelised Energy Cost (LEC). To enhance heat transfer between the working fluid and source fluid, nanoparticles are added to the source fluid. Application of nanofluids in the heat transfer system helps in maximizing recovery of the waste heat in the heat exchangers. Based on the availability and cost, CuO nanoparticles are considered for the study. Effect of Pinch Point Temperature Difference (PPTD) and concentration of nanoparticles in heat exchangers is studied and discussed. Results showed that nanofluids based ORC gives maximum thermal efficiency of 18.50% at LEC of 2.59 $/kWh. Total reduction of 7.11% in LEC can be achieved using nanofluids.


2016 ◽  
Vol 174 ◽  
pp. 25-36 ◽  
Author(s):  
Limin Wang ◽  
Lei Deng ◽  
Chenglong Ji ◽  
Erkai Liang ◽  
Changxia Wang ◽  
...  

Author(s):  
Zhongran Chi ◽  
Haiqing Liu ◽  
Shusheng Zang

This paper discusses the approach of cooling design optimization of a high-pressure turbine (HPT) endwall with applied 3D conjugate heat transfer (CHT) computational fluid dynamics (CFD). This study involved the optimization of the spacing of impingement jet array and the exit width of shaped holes, which are different for each cooling cavity. The optimization objectives were to reduce the wall-temperature level and to increase the aerodynamic performance. The optimization methodology consisted of an in-house parametric design and CFD mesh generation tool, a CHT CFD solver, a database of CFD results, a metamodel, and an algorithm for multi-objective optimization. The CFD tool was validated against experimental data of an endwall at CHT conditions. The metamodel, which could efficiently estimate the optimization objectives of new individuals without CFD runs, was developed and coupled with nondominated sorting genetic algorithm II (NSGA II) to accelerate the optimization process. Through the optimization search, the Pareto front of the problem was found in each iteration. The accuracy of metamodel with more iterations was improved by enriching database. But optimal designs found by the last iteration are almost identical with those of the first iteration. Through analyzing extra CFD results, it was demonstrated that the design variables in the Pareto front successfully reached the optimal values. The optimal pitches of impingement arrays could be decided accommodating the local thermal load while avoiding jet lift-off of film coolant. It was also suggested that cylindrical film holes near throat should be beneficial to both aerodynamic and cooling performances.


2015 ◽  
Vol 719-720 ◽  
pp. 177-180
Author(s):  
Kağan Poyraz

Due to environmental and energy matters, importance of future construction trend-Passive House Design is increasing all over the world. In Europe, already recommended values ​​for passive buildings are included in thermal insulation standards and energy regulation directives. There is a wide range of construction materials nowadays. The key point is using proper techniques by harmonizing correct practice and materials. In this regard, smart optimization set-up approach is necessary in order to achieve the most suitable design which has the lowest CO2 and SO2 values and appears as the cheapest option. The sample given in this paper is an example of an exterior wall design for residential passive houses (heat transfer coefficient (U) value through the cross section is 0,108 W/m²K). Connected with the aim of the paper, which is showing an multi-objective optimization method for choosing the best thermal insulation design in the case of that more than one projection, results of given example design in the paper is used. Simultaneously, criteria of total thickness, heat transfer coefficient (U) through the cross section, global warming potential (GWP), acid produce (AP), primary energy content (PEI) non renewable and cost in 2013 per m2 are included in “Smart optimization set-up approach diagram”.


Sign in / Sign up

Export Citation Format

Share Document