One-way Conformation Memory Polymers for Unidirectional Removal of Dyes and Hot Wastewater Reuse from Textile Effluents

2021 ◽  
pp. 132212
Author(s):  
Tingting Wei ◽  
Long Chen ◽  
Kaixiang Wang ◽  
Yulin Shi ◽  
Bin Dai
2012 ◽  
Vol 7 (4) ◽  
Author(s):  
Frederick Kakembo

The paper explores the centrality of community-based education and training in addressing constraints and opportunities for wastewater management in Uganda. To be sustainable, wastewater management need to be conceived in terms of socio-economic incentives, community action, group pressure and social capital. It is assumed that communities could be motivated to undertake sustainable wastewater disposal activities if concrete benefits are demonstrated. The benefits include among others; reducing expenditure on health; improvement of the fisheries sector and the use of wastewater for crop farming. The paper is based on a study that analyzed the role of socio-economic incentives and Public-Private-Partnership (PPP) in sustainable management of wastewater. Data was collected through personal interviews, documents analysis and review of recent studies on wastewater reuse in Uganda. Focus was put on districts of Mukono, Buikwe and Kayunga in central Uganda. Findings reveal that in line with the Hydro-Social-Health cycle, physical, social, political, economic, and cultural factors converge to influence wastewater management. The paper duly describes innovative education and training approaches based on Communal Water Protection Units (COWAPU) facilitated by multidisciplinary Water Professionals and Educators (WAPE).It is concluded that it is possible to operate a complete sanitation system without subsidies.


2003 ◽  
Vol 3 (4) ◽  
pp. 169-175 ◽  
Author(s):  
S. Barbagallo ◽  
F. Brissaud ◽  
G.L. Cirelli ◽  
S. Consoli ◽  
P. Xu

In arid and semiarid regions the reclamation and reuse of municipal wastewater can play a strategic role in alleviating water resources shortages. Public awareness is growing about the need to recycle and reuse water for increasing supply availability. Many wastewater reuse projects have been put in operation in European and Mediterranean countries adopting extensive treatment systems such as aquifer recharge, lagooning, constructed wetlands, and storage reservoirs, mainly for landscape and agricultural irrigation. In agricultural reuse systems, there is an increasing interest in extensive technologies because of their high reliability, and easy and low cost operation and maintenance. Wastewater storage reservoirs have become the option selected in many countries because of the advantages they present in comparison with other treatment alternatives, namely the coupling of two purposes, stabilization and seasonal regulation. This paper describes an example of a wastewater storage system, built in Caltagirone (Sicily, Italy). The storage results in a tertiary treatment of a continuous inlet flow of activated sludge effluents. The prediction of the microbiological water quality has been evaluated by means of a non-steady-state first-order kinetic model. Single and multiple regressions were applied to determine the main variables that most significantly affected die-off coefficients. The proposed model has been calibrated using the results of a field monitoring carried out during a period from March to October 2000.


1989 ◽  
Vol 21 (3) ◽  
pp. 43-47 ◽  
Author(s):  
Joan B. Rose ◽  
Ricardo De Leon ◽  
Charles P. Gerba

Arizona, located in the arid Southwestern United States, is heavily dependent on groundwater. In order to protect this limited resource, wastewater reuse has been implemented. Virus and Giardia monitoring of wastewater used for irrigation has also been initiated as a means for controlling the public's exposure to these pathogens. Treatment facilities must produce wastewater with no detectable Giardia cysts and one virus plaque forming unit (pfu) per 40 liters (L) for unrestricted reuse. For restricted reuse, 125 pfu/40 L is allowed. Methods based on filtration were used to monitor facilities at monthly, quarterly or biannual frequencies. Results after two years of monitoring are presented. All 11 treatment facilities produced water meeting the virus standard of 125 pfu/40 L. Only plants which used sand filtration and disinfection achieved consistent levels of virus below 1 pfu/40 L. Out of 70 samples, 74% contained no detectable viruses. Giardia was detected in 29 to 50% of the samples. Most plants would need to upgrade their treatment in order to meet standards for unrestricted irrigation.


1991 ◽  
Vol 23 (1-3) ◽  
pp. 201-209 ◽  
Author(s):  
W. Kreisel

Water quality can affect human health in various ways: through breeding of vectors, presence of pathogenic protozoa, helminths, bacteria and viruses, or through inorganic and organic chemicals. While traditional concern has been with pathogens and gastro-intestinal diseases, chemical pollutants in drinking-water supplies have in many instances reached proportions which affect human health, especially in cases of chronic exposure. Treatment of drinking-water, often grossly inadequate in developing countries, is the last barrier of health protection, but control at source is more effective for pollution control. Several WHO programmes of the International Drinking-Water Supply and Sanitation Decade have stimulated awareness of the importance of water quality in public water supplies. Three main streams have been followed during the eighties: guidelines for drinking-water quality, guidelines for wastewater reuse and the monitoring of freshwater quality. Following massive investments in the community water supply sector to provide people with adequate quantities of drinking-water, it becomes more and more important to also guarantee minimum quality standards. This has been recognized by many water and health authorities in developing countries and, as a result, WHO cooperates with many of them in establishing water quality laboratories and pollution control programmes.


1995 ◽  
Vol 31 (5-6) ◽  
pp. 443-446 ◽  
Author(s):  
P. G. Gaspard ◽  
J. Schwartzbrod

In the framework of agricultural wastewater reuse, the W.H.O. has defined a parasitological quality for sewage with less than one nematode egg per liter. The purpose of this work is to define an effective method to detect helminth eggs in wastewater. Seven techniques have been applied to waste water analysis, with a comparison of their respective results, varying from 26 to 74 %. Be it in the framework of artificial contamination or on site, the best results were obtained with the diphasic technique perfected at the laboratory including a treatment with antiformine at 8 % + ethylacetate followed by a flotation with zinc sulphate at 55%. The validation in the laboratory of the methods performance on treated wastewater allowed us to show that the yield of the method is significantly independent of the egg concentration as well as giving good homogeneity of results with a concentration of 1 egg/litre.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 99-105 ◽  
Author(s):  
A. Lopez ◽  
G. Ricco ◽  
R. Ciannarella ◽  
A. Rozzi ◽  
A. C. Di Pinto ◽  
...  

Among the activities appointed by the EC research-project “Integrated water recycling and emission abatement in the textile industry” (Contract: ENV4-CT95-0064), the effectiveness of ozone for improving the biotreatability of recalcitrant effluents as well as for removing from them toxic and/or inhibitory pollutants has been evaluated at lab-scale. Real membrane concentrates (pH=7.9; TOC=190 ppm; CDO=595 ppm; BOD5=0 ppm; Conductivity=5,000 μS/cm; Microtox-EC20=34%) produced at Bulgarograsso (Italy) Wastewater Treatment Plant by nanofiltering biologically treated secondary textile effluents, have been treated with ozonated air (O3conc.=12 ppm) over 120 min. The results have indicated that during ozonation, BOD5 increases from 0 to 75 ppm, whereas COD and TOC both decrease by about 50% and 30 % respectively. As for potentially toxic and/or inhibitory pollutants such as dyes, nonionic surfactants and halogenated organics, all measured as sum parameters, removals higher than 90% were achieved as confirmed by the complete disappearance of acute toxicity in the treated streams. The only ozonation byproducts searched for and found were aldehydes whose total amount continuously increased in the first hour from 1.2 up to 11.8 ppm. Among them, formaldehyde, acetaldehyde, glyoxal, propionaldehyde, and butyraldehyde were identified by HPLC.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 43-50 ◽  
Author(s):  
Marcelo Juanico ◽  
Eran Friedler

Most of the water has been captured in the rivers of Israel and they have turned into dry river-beds which deliver only sporadic winter floods. In a semi-arid country where literally every drop of water is used, reclaimed wastewater is the most feasible water source for river recovery. Two topics are addressed in this paper: water quality management in rivers where most of the flowing water is treated wastewater, and the allocations of reclaimed wastewater required for the recovery of rivers and streams. Water quality management must consider that the main source of water to the river has a pollution loading which reduces its capability to absorb other pollution impacts. The allocation of treated wastewater for the revival of rivers may not affect negatively the water balance of the region; it may eventually improve it. An upstream bruto allocation of 122 MCM/year of wastewater for the recovery of 14 rivers in Israel may favor downstream reuse of this wastewater, resulting in a small neto allocation and in an increase of the water resources available to the country. The discharge of effluents upstream to revive the river followed by their re-capture downstream for irrigation, implies a further stage in the intensification of water reuse.


2019 ◽  
Vol 16 (12) ◽  
pp. 8653-8662 ◽  
Author(s):  
F. Gurbuz ◽  
A. Ozcan ◽  
H. Ciftci ◽  
O. Acet ◽  
M. Odabasi

Sign in / Sign up

Export Citation Format

Share Document