In-situ Repair of Marine Coatings by a Fe3O4 Nanoparticle-Modified Epoxy Resin under Seawater

2021 ◽  
pp. 132827
Author(s):  
Zhenliang Feng ◽  
Rongjian Wan ◽  
Shiming Chen ◽  
Xiao Tang ◽  
Hong Ju ◽  
...  
2014 ◽  
Vol 910 ◽  
pp. 70-73
Author(s):  
Tao Wang ◽  
Jun Wang ◽  
Bin Zhang

P(BA-St), a good modifier for epoxy resin, was prepared by BA and St in situ polymerization. The modified resin system was based on diglycidyl ether of bisphenol and methyl tetrahydrophthalic anhydride, tris (dimethylaminomethyl) phenol. The influence of the copolymer on mechanical properties and thermal performance of the systems was studied. When 15 wt% of the BA/St with a weight ratio composition of 7.5/7.5 was added to epoxy, high performance modified epoxy resin was obtained.


2012 ◽  
pp. 120913092228002 ◽  
Author(s):  
Raju Thomas ◽  
Christophe Sinturel ◽  
Jürgen Pionteck ◽  
Harinarayanan Puliyalil ◽  
Sabu Thomas

Author(s):  
Georgel MIHU ◽  
Claudia Veronica UNGUREANU ◽  
Vasile BRIA ◽  
Marina BUNEA ◽  
Rodica CHIHAI PEȚU ◽  
...  

Epoxy resins have been presenting a lot of scientific and technical interests and organic modified epoxy resins have recently receiving a great deal of attention. For obtaining the composite materials with good mechanical proprieties, a large variety of organic modification agents were used. For this study gluten and gelatin had been used as modifying agents thinking that their dispersion inside the polymer could increase the polymer biocompatibility. Equal amounts of the proteins were milled together and the obtained compound was used to form 1 to 5% weight ratios organic agents modified epoxy materials. To highlight the effect of these proteins in epoxy matrix mechanical tests as three-point bending and compression were performed.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Wei Yuan ◽  
Qian Hu ◽  
Jiao Zhang ◽  
Feng Huang ◽  
Jing Liu

This study modified graphene oxide (GO) with hydrophilic octadecylamine (ODA) via covalent bonding to improve its dispersion in silicone-modified epoxy resin (SMER) coatings. The structural and physical properties of ODA-GO were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle tests. The ODA-GO composite materials were added to SMER coatings by physical mixing. FE-SEM, water absorption, and contact angle tests were used to evaluate the physical properties of the ODA-GO/SMER coatings, while salt spray, electrochemical impedance spectroscopy (EIS), and scanning Kelvin probe (SKP) methods were used to test the anticorrosive performance of ODA-GO/SMER composite coatings on Q235 steel substrates. It was found that ODA was successfully grafted onto the surfaces of GO. The resulting ODA-GO material exhibited good hydrophobicity and dispersion in SMER coatings. The anticorrosive properties of the ODA-GO/SMER coatings were significantly improved due to the increased interfacial adhesion between the nanosheets and SMER, lengthening of the corrosive solution diffusion path, and increased cathodic peeling resistance. The 1 wt.% ODA-GO/SMER coating provided the best corrosion resistance than SMER coatings with other amounts of ODA-GO (including no addition). After immersion in 3.5 wt.% NaCl solution for 28 days, the low-frequency end impedance value of the 1 wt.% ODA-GO/SMER coating remained high, at 6.2 × 108 Ω·cm2.


2021 ◽  
Vol 5 (7) ◽  
pp. 191
Author(s):  
Yanshuai Wang ◽  
Siyao Guo ◽  
Biqin Dong ◽  
Feng Xing

The functionalization of graphene has been reported widely, showing special physical and chemical properties. However, due to the lack of surface functional groups, the poor dispersibility of graphene in solvents strongly limits its engineering applications. This paper develops a novel green “in-situ titania intercalation” method to prepare a highly dispersed graphene, which is enabled by the generation of the titania precursor between the layer of graphene at room temperature to yield titania-graphene nanocomposites (TiO2-RGO). The precursor of titania will produce amounts of nano titania between the graphene interlayers, which can effectively resist the interfacial van der Waals force of the interlamination in graphene for improved dispersion state. Such highly dispersed TiO2-RGO nanocomposites were used to modify epoxy resin. Surprisingly, significant enhancement of the mechanical performance of epoxy resin was observed when incorporating the titania-graphene nanocomposites, especially the improvements in tensile strength and elongation at break, with 75.54% and 176.61% increases at optimal usage compared to the pure epoxy, respectively. The approach presented herein is easy and economical for industry production, which can be potentially applied to the research of high mechanical property graphene/epoxy composite system.


2021 ◽  
Vol 35 (7) ◽  
pp. 6250-6264
Author(s):  
Kai Fang ◽  
Liujia Ma ◽  
Ya-Jun Cheng ◽  
Senlin Xia ◽  
Zhaohui Yang ◽  
...  

1992 ◽  
Vol 25 (13) ◽  
pp. 3492-3499 ◽  
Author(s):  
Alexander J. MacKinnon ◽  
Stephen D. Jenkins ◽  
Patrick T. McGrail ◽  
Richard A. Pethrick

Sign in / Sign up

Export Citation Format

Share Document