Faculty Opinions recommendation of Crystal structure of a photolyase bound to a CPD-like DNA lesion after in situ repair.

Author(s):  
Xiaodong Cheng
Science ◽  
2004 ◽  
Vol 306 (5702) ◽  
pp. 1789-1793 ◽  
Author(s):  
Alexandra Mees ◽  
Tobias Klar ◽  
Petra Gnau ◽  
Ulrich Hennecke ◽  
Andre P. M. Eker ◽  
...  

2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2001 ◽  
Vol 15 (18) ◽  
pp. 2491-2497 ◽  
Author(s):  
J. L. ZHU ◽  
L. C. CHEN ◽  
R. C. YU ◽  
F. Y. LI ◽  
J. LIU ◽  
...  

In situ high pressure energy dispersive X-ray diffraction measurements on layered perovskite-like manganate Ca 3 Mn 2 O 7 under pressures up to 35 GPa have been performed by using diamond anvil cell with synchrotron radiation. The results show that the structure of layered perovskite-like manganate Ca 3 Mn 2 O 7 is unstable under pressure due to the easy compression of NaCl-type blocks. The structure of Ca 3 Mn 2 O 7 underwent two phase transitions under pressures in the range of 0~35 GPa. One was at about 1.3 GPa with the crystal structure changing from tetragonal to orthorhombic. The other was at about 9.5 GPa with the crystal structure changing from orthorhombic back to another tetragonal.


2021 ◽  
Vol 74 (3) ◽  
pp. e201-e202
Author(s):  
Hunter M. Ray ◽  
Yuki Ikeno ◽  
Jacob Siahaan ◽  
Kristofer Charlton-Ouw

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Qian Li ◽  
Yun Liu ◽  
Andrew Studer ◽  
Zhenrong Li ◽  
Ray Withers ◽  
...  

We characterized the temperature dependent (~25–200°C) electromechanical properties and crystal structure of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals usingin situelectrical measurement and neutron diffraction techniques. The results show that the poled crystal experiences an addition phase transition around 120°C whereas such a transition is absent in the unpoled crystal. It is also found that the polar order persists above the maximum dielectric permittivity temperature at which the crystal shows a well-defined antiferroelectric behavior. The changes in the electrical properties and underlying crystal structure are discussed in the paper.


Vacuum ◽  
2021 ◽  
pp. 110406
Author(s):  
Lei Huang ◽  
Yafei Pan ◽  
Jiuxing Zhang ◽  
Yong Du ◽  
Yuhui Zhang ◽  
...  

2021 ◽  
pp. 132827
Author(s):  
Zhenliang Feng ◽  
Rongjian Wan ◽  
Shiming Chen ◽  
Xiao Tang ◽  
Hong Ju ◽  
...  

2019 ◽  
Vol 178 ◽  
pp. 665-679 ◽  
Author(s):  
Mohammad Soheil Ghobadi ◽  
Roohollah Ahmady Jazany ◽  
Hamidreza Farshchi

2017 ◽  
Vol 72 (11) ◽  
pp. 765-774
Author(s):  
Daniel Rudolph ◽  
Sonja Laufer ◽  
Ingo Hartenbach

AbstractAttempts to synthesize Pr4Mo7O27 using Pr, Pr6O11 and MoO3 in a molar ratio of 8:6:77 led to a main product of scheelite-type Pr0.667[MoO4] and few single crystals of the triclinic A-type Pr6Mo10O39. The latter crystallizes in space group P1̅ (a=945.25(1), b=1058.49(2), c=1815.16(3) pm; α=104.149(1), β=95.220(1), γ=102.617(1)°, Z=2). Its crystal structure comprises six crystallographically independent Pr3+ cations, eight tetrahedral [MoO4]2− units, and one [Mo2O7]2− entity. The cations display coordination numbers of seven (1×) and eight (5×), while the [MoO4]2− tetrahedra are surrounded by five Pr3+ cations each. The [Mo2O7]2− anions exhibit a coordination environment of seven Pr3+ cations. The attempt to synthesize PrF[MoO4] using PrOF (from in situ thermal decomposition of PrF[CO3]) as reagent did not lead to the desired product but to monoclinic B-type Pr6Mo10O39. This slightly less dense modification compared to its triclinic analogue crystallizes in space group C2/c (a=1247.93(3), b=1989.68(6), c=1392.52 (4) pm, β=100.505(2)°, Z=4) with three crystallographically independent Pr3+ cations, four [MoO4]2− tetrahedra, and again one [Mo2O7]2− unit in the crystal structure. Thus, both Pr6Mo10O39 modifications are better described with the structured formula Pr6[MoO4]8[Mo2O7]. The coordination numbers around the Pr3+ cations are seven (1×) and eight (2×) while all four [MoO4]2− anions are again surrounded by five Pr3+ cations each. Six of the latter represent the coordination environment around the [Mo2O7]2− entities. Besides the thorough comparison of the crystal structures single crystal Raman spectra were recorded for both Pr6Mo10O39 phases.


Sign in / Sign up

Export Citation Format

Share Document