In-situ grown porous protective layers with high binding strength for stable Zn anodes

2022 ◽  
pp. 134688
Author(s):  
Mangwei Cui ◽  
Boxun Yan ◽  
Funian Mo ◽  
Xiaoqi Wang ◽  
Yan Huang ◽  
...  
2018 ◽  
Vol 15 (8) ◽  
pp. 472 ◽  
Author(s):  
Supriya Lath ◽  
Divina A. Navarro ◽  
Dusan Losic ◽  
Anupama Kumar ◽  
Michael J. McLaughlin

Environmental contextPer- and poly-fluoroalkyl substances (PFASs) are contaminants of emerging concern, creating a need to develop efficient multi-functional adsorbents for improved remediation performance. By exploiting the versatility of graphene technology, we demonstrate that combining mineral and carbonaceous phases greatly increases and strengthens PFAS-binding to the adsorbent. The study highlights the benefits and potential applications of mixed adsorbents in PFAS-remediation. AbstractAs the degradation of perfluorooctanoic acid (PFOA) and related per- and poly-fluoroalkyl substances (PFASs) is energy-intensive, there is a need to develop in situ remediation strategies to manage PFAS-contamination. The sorption of PFOA by graphene oxide (GO), an iron-oxide-modified reduced-GO composite (FeG) and an activated-carbon(C)/clay/alumina-based adsorbent, RemBindTM (RemB), are evaluated. Sorption by FeG and RemB (>90%) is much greater than GO (60%). While an increase in pH hinders PFOA-sorption by GO, owing to the increased repulsion of anionic PFOA, variations in pH and ionic strength do not significantly influence PFOA-sorption by FeG and RemB, which indicates that binding is predominantly controlled by non-electrostatic forces. Hydrophobic interactions are assumed at the graphene or C-surface for all adsorbents, with added ligand-exchange mechanisms involving the associated Fe- and Al-minerals in FeG and RemB, respectively. Desorption of adsorbed PFOA is greatest in methanol, compared to water, toluene, or hexane, which provides estimates of the binding strength and reversibility from an environmental-partitioning perspective; i.e. risk of remobilisation of bound PFOA owing to rainfall events is low, but the presence of polar organic solvents may increase leaching risk. Iron-mineral-functionalisation of GO enhances the amount of PFOA adsorbed (by 30%) as well as the binding strength, which highlights the advantage of combining mineral and C-phases. Successful sorption of a range of PFASs from a contaminated-site water sample highlights the potential of using ‘mixed’ adsorbents like FeG and RemB in situ for PFAS-remediation, as they provide avenues for enhanced sorption through multiple mechanisms.


2010 ◽  
Vol 18 (3) ◽  
Author(s):  
A.V. Voitsekhovskii ◽  
S.N. Nesmelov ◽  
S.M. Dzyadukh ◽  
V.S. Varavin ◽  
S.A. Dvoretskii ◽  
...  

AbstractThe electrical properties of the interface between Hg1−xCdxTe (x = 0.22 and x = 0.32–0.36) and CdTe prepared in situ molecular beam epitaxy were estimated at 77 K. The methods of determination of main parameters of interface semiconductor/insulator and insulator from capacitance-voltage characteristics of MIS-structures based on graded-band Hg1−xCdxTe have been developed. The fixed charge states density, fast surface states density, and density of mobile charge are obtained from capacitance-voltage measurements. For improvement in stable and electrical strength of insulator coating for several samples over CdTe additional protective layers SiO2-Si3N4 are formed for x = 0.22 and ZnTe for x = 0.32–0.36.


1998 ◽  
Vol 555 ◽  
Author(s):  
S. S. Rosenblum ◽  
Kevin L. Davis ◽  
James M. Tedesco

AbstractWe report on Raman studies of diamond-like carbon (DLC) films; in particular, we report on the instrumentation and methodology required for comparing Raman measurements taken on different Raman analyzers. Raman spectroscopy has taken on an increasingly important role in materials processing because of its capability of performing non-destructive, in situ characterization of thin films. In particular, noncrystalline carbon coatings have become ubiquitous as protective layers on everything from machine tools to hard disk drives. As tolerances on coating properties begin to play an important part in determining device failure, Raman spectroscopy has found ever greater application as a quality control/quality assurance tool. However, use of Raman as an analytical tool has been hampered by the inability to quantitatively compare spectra obtained with different Raman analyzers. By using automated, robust calibration protocols on both the wavelength and intensity axes, we have demonstrated cross-instrument calibration transfer of DLC films.


2021 ◽  
Vol 11 (6-S) ◽  
pp. 195-205
Author(s):  
Mandeep Singh ◽  
Dhruv Dev ◽  
D.N. Prasad

Delivery of the drug to the ocular area is blocked by the protective layers covering the eyes; it has always been a major problem to find effective bioavailability of the active drug in the ocular area due to the short duration of precorneal majority ocular stay. Direct delivery systems combine as well as oil, solution, and suspension, as a result, many delivery systems are not able to effectively treat eye diseases. Many works have been done and are being done to overcome this problem one of which is to use in-situ to build polymeric systems. Ocular In-situ gelling systems are a new class of eye drug delivery systems that are initially in solution but are quickly transformed into a viscous gel when introduced or inserted into an ocular cavity where active drugs are released continuously. This sol-to-gel phase conversion depends on a variety of factors such as changes in pH, ion presence, and temperature changes. Post-transplanting gel selects viscosity and bio-adhesive properties, which prolongs the gel's stay in the ocular area and also releases the drug in a long and continuous way unlike conventional eye drops and ointments. This review is a brief overview of situ gels, the various methods of in situ gelling systems, the different types of polymers used in situ gels, their gel-based methods, and the polymeric testing of situ gel. Keywords: In-situ gel, Polymers, and ion triggered in-situ gel, Mechanism, Evaluation parameters


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1089 ◽  
Author(s):  
Vít Křivý ◽  
Monika Kubzová ◽  
Petr Konečný ◽  
Kateřina Kreislová

The safety and durability of bridges designed from weathering steels are conditioned by the development of a sufficiently protective layer of corrosion products. Air pollution, microclimate around the bridge, time of wetness, structural solution of the bridge, and the position and orientation of the surface within the bridge structure all influence the development of protective layers on the surface of the weathering steel. In this article, attention is focused mainly on the microclimatic effects resulting from the road traffic under the bridge. The influence of chloride deposition on the development of corrosion products is evaluated using experimental in situ testing. Two neighboring bridges made of weathering steel and crossing different types of obstacles were selected for this experiment. Relations and dependences between the measured parameters (deposition rate of chlorides, corrosion rates, thickness of corrosion products and the amount of chlorides in corrosion products) are evaluated and discussed.


2015 ◽  
Vol 44 (29) ◽  
pp. 13359-13368 ◽  
Author(s):  
Cecelia McDonald ◽  
David W. Williams ◽  
Priyanka Comar ◽  
Simon J. Coles ◽  
Tony D. Keene ◽  
...  

Sheet Metal: The deliberate in situ Schiff base condensation of two organic subunits (hydroxamic acid and phenolic aldehyde) leads to polydentate ligands capable of forming large Cu(ii) cages of nuclearities ranging from [Cu10] to [Cu30].


Sign in / Sign up

Export Citation Format

Share Document