scholarly journals A Recent Overview: In Situ Gel Smart Carriers for Ocular Drug Delivery

2021 ◽  
Vol 11 (6-S) ◽  
pp. 195-205
Author(s):  
Mandeep Singh ◽  
Dhruv Dev ◽  
D.N. Prasad

Delivery of the drug to the ocular area is blocked by the protective layers covering the eyes; it has always been a major problem to find effective bioavailability of the active drug in the ocular area due to the short duration of precorneal majority ocular stay. Direct delivery systems combine as well as oil, solution, and suspension, as a result, many delivery systems are not able to effectively treat eye diseases. Many works have been done and are being done to overcome this problem one of which is to use in-situ to build polymeric systems. Ocular In-situ gelling systems are a new class of eye drug delivery systems that are initially in solution but are quickly transformed into a viscous gel when introduced or inserted into an ocular cavity where active drugs are released continuously. This sol-to-gel phase conversion depends on a variety of factors such as changes in pH, ion presence, and temperature changes. Post-transplanting gel selects viscosity and bio-adhesive properties, which prolongs the gel's stay in the ocular area and also releases the drug in a long and continuous way unlike conventional eye drops and ointments. This review is a brief overview of situ gels, the various methods of in situ gelling systems, the different types of polymers used in situ gels, their gel-based methods, and the polymeric testing of situ gel. Keywords: In-situ gel, Polymers, and ion triggered in-situ gel, Mechanism, Evaluation parameters

2019 ◽  
Vol 9 (1) ◽  
pp. 337-347 ◽  
Author(s):  
Asmat Majeed ◽  
Nisar Ahmad Khan

Eye is the most sensitive organ of the body. Designing of ocular drug delivery system is the  most challenging field for pharmaceutical scientists as less than 5% of administered drug enters the eye due to the complicated anatomical structure of the eye, small absorptive surface and low transparency of the cornea, lipophilicity of corneal epithelium, pre corneal loss (due to nasolacrimal drainage), bonding of the drug with proteins contained in tear fluid, blinking, low capacity of conjunctival sac, that restricts the entry of drug molecule at the site of action and ultimately leads to poor ocular therapy. To improve ophthalmic drug bioavailability, there are considerable efforts directed towards newer drug delivery systems for ophthalmic administration. These novel drug delivery systems offer manifold advantages over conventional systems as they increase the efficiency of drug delivery by improving the release profile and also reduce drug toxicity. A lot of research going on in this area proves the fact that in situ gelling systems can be beneficial in the ocular drug delivery. In situ gel forming systems are drug delivery systems that are in solution form before administration in the body but once administered, undergo  in situ gelation, to form a gel triggered by external stimulus such as temperature, pH etc.  This review is to Specify a brief summary about in situ gels, various approaches for in situ gelling systems, different types of polymers used in in situ gels, their mechanisms of gel formation and evaluation of polymeric in situ gel. Keywords: in situ gel, polymers, Temperature induced in situ gel system, pH induced in situ gel system, Ion activated systems.


2020 ◽  
Vol 10 (2-s) ◽  
pp. 183-197
Author(s):  
Anjali Sunil Sabale ◽  
Abhijeet D Kulkarni ◽  
Ajay Sunil Sabale

Nasal delivery is an alternative to oral or parenteral administration due to certain limitations such as absorption of the drug, drug targeting to particular organs can cause a problem for administration through oral route.  The nasal route has also been successfully used for bypassing the blood-brain barrier and afterword delivering drug molecules to the central nervous system. Also, lag time related to oral drug delivery is reduces by this route and offers noninvasiveness, self-medication, patient comfort, and patient compliance. Extend drug delivery can be attained by different new dosage forms like in situ gel. In situ formulations are drug delivery systems. The in-situ gelling system is a process in which the solution forms of a gel before administration in the body, but once administrated, it undergoes gelation in-situ, to form a gel. In situ gelling system becomes very popular nowadays because of their several advantages over conventional drug delivery systems like a sustained and prolonged release of a drug, reduced Frequency of administration, improved patient compliance and comfort. Approaches towards the various formulation of in-situ gel concerning temperature, pH, and physicochemical conditions. The in situ gel-forming polymeric formulations offer several advantages like sustained and prolonged action reduced Frequency of administration, in comparison to conventional drug delivery systems.  From a manufacturing point of view, the production of such systems is less complex and thus lowers the investment and manufacturing cost. Various evaluation parameters are considered during the preparation of In-Situ gel. Keywords: Nasal Drug Delivery, In Situ gel, gelation, polymers, etc


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 360
Author(s):  
Pierre-Louis Destruel ◽  
Ni Zeng ◽  
Françoise Brignole-Baudouin ◽  
Sophie Douat ◽  
Johanne Seguin ◽  
...  

Mydriasis is required prior to many eye examinations and ophthalmic surgeries. Nowadays, phenylephrine hydrochloride (PHE) and tropicamide (TPC) are extensively used to induce mydriasis. Several pharmaceutic dosage forms of these two active ingredients have been described. However, no optimal therapeutic strategy has reached the market. The present work focuses on the formulation and evaluation of a mucoadhesive ion-activated in situ gelling delivery system based on gellan gum and hydroxyethylcellulose (HEC) for the delivery of phenylephrine and tropicamide. First, in vitro drug release was studied to assess appropriate sustained drug delivery on the ocular surface region. Drug release mechanisms were explored and explained using mathematical modeling. Then, in situ gelling delivery systems were visualized using scanning electron microscopy illustrating the drug release phenomena involved. Afterward, cytotoxicity of the developed formulations was studied and compared with those of commercially available eye drops. Human epithelial corneal cells were used. Finally, mydriasis intensity and kinetic was investigated in vivo. Mydriasis pharmacodynamics was studied by non-invasive optical imaging on vigilant rabbits, allowing eye blinking and nasolacrimal drainage to occur physiologically. In situ gelling delivery systems mydriasis profiles exhibited a significant increase of intensity and duration compared with those of conventional eye drops. Efficient mydriasis was achieved following the administration of a single drop of in situ gel reducing the required amount of administered active ingredients by four- to eight-fold compared with classic eye drop regimen.


Author(s):  
MRINMOY DEKA ◽  
ABDUL BAQUEE AHMED ◽  
JASHOBIR CHAKRABORTY

Eye is a sensitive organ and is easily injured and infected. Delivery of drugs into eye is complicated due to removal mechanism of precorneal area results decrease in therapeutic response. Conventional ocular delivery systems like solution, suspension, ointment shows some disadvantages such as rapid corneal elimination, repeated instillation of drug and short duration of action. In situ polymeric delivery system will help to achieve optimal concentration of drug at the target site, thereby helps to achieve the desired therapeutic concentration. There are various novel ocular drug delivery systems such as In-situ gel, dendrimers, niosomes, nanoparticulate system, collagen shield, ocular iontophoresis suspension and ocusert etc. In situ gelling systems are liquid upon instillation and undergo a phase transition to form gel due to some stimuli responses such as temperature modulation, change in pH and presence of ions. Various attempts have been made towards the development of stable sustained release in-situ gels. Newer research in ophthalmic drug delivery systems is directed towards an incorporation of several drug delivery technologies, that includes to build up systems which is not only extend the contact time of the vehicle at the ocular surface, but which at the same time slow down the removal of the drug. This is a review based on ocular in situ gels, characteristization, techniques and evaluation of in situ ophthalmic drug delivery systems,


2018 ◽  
Vol 11 (1) ◽  
pp. 380
Author(s):  
Harsha Vardhani Kondepati ◽  
Girish Pai Kulyadi ◽  
Vamshi Krishna Tippavajhala

Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 130
Author(s):  
Roberta Cassano ◽  
Maria Luisa Di Gioia ◽  
Sonia Trombino

The most common route of administration of ophthalmic drugs is the topical route because it is convenient, non-invasive, and accessible to all patients. Unfortunately, drugs administered topically are not able to reach effective concentrations. Moreover, their bioavailability must be improved to decrease the frequency of administrations and their side effects, and to increase their therapeutic efficiency. For this purpose, in recent decades, particular attention has been given to the possibility of developing prolonged-release forms that are able to increase the precorneal residence time and decrease the loss of the drug due to tearing. Among these forms, gel-based materials have been studied as an ideal delivery system because they are an extremely versatile class with numerous prospective applications in ophthalmology. These materials are used in gel eye drops, in situ gelling formulations, intravitreal injections, and therapeutic contact lenses. This review is intended to describe gel-based materials and their main applications in ophthalmology.


Author(s):  
Rathore K. S. ◽  
Nema R. K.

Promising management of eye ailments take off effective concentration of drug at the eye for sufficient period of time. Dosage forms are administered directly to eye for localized ophthalmic therapy. Most of the treatments call for the topical administration of ophthalmic active drugs to the tissues around the ocular cavity. Conventional ophthalmic drug delivery systems including eye drops, ophthalmic ointments, are no longer sufficient to encounter eye diseases. This article reviews the constraints with conventional ocular therapy and explores various novel approaches like in-situ gel, ocular films or ocuserts, nanosuspension, collagen shields, latex systems, nanoparticles, liposomes, niosomes, iontophorosis, eye implants, etc to improve the ophthalmic bioavailability of drugs to the anterior chamber of the eye.


2020 ◽  
Vol 10 (2) ◽  
pp. 85-95
Author(s):  
Kapil Khatri ◽  
Shikha Jain ◽  
Satish Shilpi

Objective:: Drug delivery through the nasal route is emerging as a promising approach due to its capability to transport the drug to the systemic circulation and the central nervous system for therapeutic benefits. Methods: In-situ gelling formulations comprising polymeric substances are emerging as preferential nasal drug delivery systems. When exposed to biological stimuli, they have the ability to undergo a solgel conversion. Result: Such mucoadhesive in-situ gel formulations designed and developed for the nasal administration have the ability to prolong the residence time of formulation in the nasal cavity, thereby serving better for complete uptake of the drug across the nasal mucosa. Conclusion: Thus, this review focuses on temperature-responsive, pH-responsive and ion responsive polymers utilized in the nasal in-situ gels together with their physicochemical characterization, evaluation and pharmaceutical applications.


Sign in / Sign up

Export Citation Format

Share Document