A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests

2015 ◽  
Vol 64 ◽  
pp. 37-48 ◽  
Author(s):  
L.H. Sneed ◽  
T. D'Antino ◽  
C. Carloni ◽  
C. Pellegrino
Keyword(s):  
2019 ◽  
Vol 817 ◽  
pp. 182-188 ◽  
Author(s):  
Yu Yuan ◽  
Cristina Gentilini ◽  
Christian Carloni ◽  
Elisa Franzoni

In recent years, steel reinforced polymer (SRP) composites have emerged as a new technology for structural strengthening, and several researches have validated the effectiveness of SRP for masonry strengthening. Research has been carried out to study the bond behavior of SRP composites applied to a masonry substrate. However, how the moist and salt on masonry surface will affect bond, which is the weak link in real strengthening applications, is little known yet. This study aims at investigating the bond behavior of SRP composites applied to moist and salt-laden masonry blocks that were subjected to an artificial weathering protocol. Single-lap shear tests were conducted to determine the bond behavior, while ion chromatography provided the salts distribution of weathered specimens to interpret some results of the shear tests.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2286
Author(s):  
Benjamin Gröger ◽  
Juliane Troschitz ◽  
Julian Vorderbrüggen ◽  
Christian Vogel ◽  
Robert Kupfer ◽  
...  

Clinching continuous fibre reinforced thermoplastic composites and metals is challenging due to the low ductility of the composite material. Therefore, a number of novel clinching technologies has been developed specifically for these material combinations. A systematic overview of these advanced clinching methods is given in the present paper. With a focus on process design, three selected clinching methods suitable for different joining tasks are described in detail. The clinching processes including equipment and tools, observed process phenomena and the resultant material structure are compared. Process phenomena during joining are explained in general and compared using computed tomography and micrograph images for each process. In addition the load bearing behaviour and the corresponding failure mechanisms are investigated by means of single-lap shear tests. Finally, the new joining technologies are discussed regarding application relevant criteria.


2020 ◽  
Vol 4 (4) ◽  
pp. 182
Author(s):  
Luciano Ombres ◽  
Salvatore Verre

In the paper, the bond between a composite strengthening system consisting of steel textiles embedded into an inorganic matrix (steel reinforced grout, SRG) and the concrete substrate, is investigated. An experimental investigation was carried out on medium density SRG specimens; direct shear tests were conducted on 20 specimens to analyze the effect of the bond length, and the age of the composite strip on the SRG-to-concrete bond behavior. In particular, the tests were conducted considering five bond length (100, 200, 250, 330, and 450 mm), and the composite strip’s age 14th, 21st, and 28th day after the bonding. Test results in the form of peak load, failure modes and, bond-slip diagrams were presented and discussed. A finite element model developed through commercial software to replicate the behavior of SRG strips, is also proposed. The effectiveness of the proposed numerical model was validated by the comparison between its predictions and experimental results.


2020 ◽  
Vol 258 ◽  
pp. 119629 ◽  
Author(s):  
Elisa Bertolesi ◽  
Gabriele Milani ◽  
Mario Fagone ◽  
Tommaso Rotunno ◽  
Ernesto Grande

2014 ◽  
Vol 1082 ◽  
pp. 123-132 ◽  
Author(s):  
Roger Navarro Verastegui ◽  
José Antonio Esmerio Mazzaferro ◽  
Cíntia Cristiane Petry Mazzaferro ◽  
Telmo Roberto Strohaecker ◽  
Jorge Fernandez Dos Santos

The main objective of the current work was to produce sound Refill FSSW joints between AA6181-T4 aluminum and DP600 steel plates. The steel plates were used in two different surface conditions: with and without galvanized surface layer. The Taguchi statistical method was used to find out the set of parameters indicated to produce joint with higher mechanical resistance. Then, the possibility of joining these dissimilar metals using the Refill FSSW process was verified. Tool rotation speed and welding time were varied to observe its effect over the joint behavior. The results of lap shear tests showed that galvanized layers do not cause any substantial change on the final joint mechanical resistance, even though different joining mechanisms had been observed.


Polymer ◽  
2005 ◽  
Vol 46 (25) ◽  
pp. 11610-11623 ◽  
Author(s):  
Zhihui Yin ◽  
Yuechun Ma ◽  
Warner Chen ◽  
Neil Coombs ◽  
Mitchell A. Winnik ◽  
...  

2019 ◽  
Vol 817 ◽  
pp. 118-125
Author(s):  
Giulia Baietti ◽  
Elisa Franzoni ◽  
Giovanni Quartarone ◽  
Alberto Fregni ◽  
Christian Carloni

This paper presents the results of single-lap direct shear tests on steel reinforced grout (SRG) strips bonded to fired-clay brick and tuff masonry blocks. For this experimental campaign, fifteen masonry blocks were constructed and reinforced with SRG composite strips. Fired-clay bricks and tuff blocks herein employed were collected from demolished historical structures in Modena and Naples (Italy), respectively. Eight out of fifteen blocks were subjected to an artificial weathering procedure to induce salt crystallization, and therefore reproduce the degradation conditions that the buildings could be subjected to during their life. Bond behavior of unconditioned strengthened specimens (i.e. SRG-masonry joints) was compared with the behavior of conditioned joints. Salt distribution, open porosity, and water absorption of brick and tuff masonry units as well as of the SRG composite matrix were analyzed to understand if and how the salt crystallization influenced the adhesion between the SRG strip and the block.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5527-5532 ◽  
Author(s):  
J. H. SONG ◽  
J. W. HA ◽  
H. HUH ◽  
J. H. LIM ◽  
S. H. PARK

This paper is concerned with the evaluation of the dynamic failure load in the lap-shear tests of a spot weld. Dynamic lap-shear tests of a spot weld in SPRC340R were conducted with different tensile speeds ranging from 5×10-5 m/sec to 5.0 m/sec. Dynamic effects on the failure load of a spot weld are examined based on the experimental data. Experimental results indicate that failure strength increases with increasing loading rates. Finite element analyses of dynamic lap-shear tests were also performed considering the failure of a spot weld. A spot weld is modeled with a beam element and dynamic failure model is utilized in order to describe the failure of a spot weld in the simulation. The failure loads obtained from the analyses are compared to those from the lap-shear tests. The comparison shows that the failure loads obtained from the analyses are close in consistence with those obtained from the experiments.


1988 ◽  
Vol 130 ◽  
Author(s):  
J. E. Ritter ◽  
L. Rosenfeld ◽  
M. R. Lin ◽  
T. J. Lardner

AbstractThe interfacial adhesive shear strengths of epoxy and acrylate coatings on glass substrates were measured by the indentation and lap shear tests. The lap shear strengths were about an order of magnitude less and exhibited considerably more variability than those measured by indentation. It is believed that the lap shear strength is controlled by large processing flaws (pores in this study); whereas, the indentation test measures the “intrinsic” strength of the coating.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Jean Yves Cognard ◽  
Romain Créac’hcadec ◽  
Laurent Sohier

Experimental and numerical analyses of the mechanical behavior of bonded joints can be made particularly difficult by the influence of edge effects. Therefore, understanding the stress distribution in an adhesive joint can lead to improvements in adhesively-bonded assemblies. Such an analysis is proposed in the case of usual single lap shear specimens. Stress singularities can contribute to the initiation and propagation of cracks in the adhesive. Thus, in order to obtain reliable experimental data to analyze the nonlinear behavior of an adhesive in an assembly, tests which strongly limit the influence of stress singularities must be proposed. The design and the abilities of such a device for shear tests are presented. Moreover, some experimental results obtained using a modified Arcan fixture, which has been designed to strongly limit edge effects, are presented in the case of monotonic and complex history loadings. Furthermore, a 2D non associated elasto-visco-plastic model is proposed to accurately describe the experimental behavior under tensile-shear monotonic loadings. An extension of this model is also proposed to represent relaxation type effects under shear loadings.


Sign in / Sign up

Export Citation Format

Share Document