scholarly journals Hydration of potassium citrate-activated BOF slag

2021 ◽  
Vol 140 ◽  
pp. 106291
Author(s):  
A.M. Kaja ◽  
K. Schollbach ◽  
S. Melzer ◽  
S.R. van der Laan ◽  
H.J.H. Brouwers ◽  
...  
Keyword(s):  
Author(s):  
S. Chatterjee ◽  
K. Konar ◽  
B. Senguttuvan ◽  
A. Maity ◽  
R. N ◽  
...  
Keyword(s):  

2021 ◽  
Vol 13 (9) ◽  
pp. 5026
Author(s):  
Gyeong-o Kang ◽  
Jung-goo Kang ◽  
Jin-young Kim ◽  
Young-sang Kim

The aim of this study was to investigate the mechanical characteristics, microstructural properties, and environmental impact of basic oxygen furnace (BOF) slag-treated clay in South Korea. Mechanical characteristics were determined via the expansion, vane shear, and unconfined compression tests according to various curing times. Scanning electron microscopy was conducted to analyze microstructural properties. Furthermore, environmental impacts were evaluated by the leaching test and pH measurements. According to the results, at the early curing stage (within 15 h), the free lime (F-CaO) content of the BOF slag is a significant factor for developing the strength of the adopted sample. However, the particle size of the BOF slag influences the increase in the strength at subsequent curing times. It was inferred that the strength behavior of the sample exhibits three phases depending on various incremental strength ratios. The expansion magnitude of the adopted samples is influenced by the F-CaO content and also the particle size of the BOF slag. Regarding the microstructural properties, the presence of reticulation structures in the amorphous gels with intergrowths of rod-like ettringite formation was verified inside the sample. Finally, the pH values and heavy metal leachates of the samples were determined within the compatible ranges of the threshold effect levels in the marine sediments of the marine environment standard of the Republic of Korea.


2021 ◽  
Vol 13 (12) ◽  
pp. 6536
Author(s):  
Yanrong Zhao ◽  
Pengliang Sun ◽  
Ping Chen ◽  
Xiaomin Guan ◽  
Yuanhao Wang ◽  
...  

In this paper, a new method of basic oxygen furnace (BOF) slag component modification with a regulator was studied. The main mineral was designed as C4AF, C2S and C3S in modified BOF slag, and the batching method, mineral compositions, hydration rate, activation index and capability of resisting sulfate corrode also were studied. XRD, BEI and EDS were used to characterize the mineral formation, and SEM was used to study the morphology of hydration products. The results show that most inert phase in BOF slag can be converted into active minerals of C4AF and C2S through reasonable batching calculation and the amount of regulating agent. The formation of C4AF and C2S in modified BOF slag is better, and a small amount of MgO is embedded in the white intermediate phase, but C3S is not detected. With the increase in the CaO/SiO2 ratio in raw materials, the CaO/SiO2 ratio of calcium silicate minerals in modified BOF slag increases, the contents of f-CaO are less than 1.0%, and the activity index improves. Compared with the BOF slag, the activity index and exothermic rate of modified BOF slag improved obviously, and the activity index of 90 days is close to 100%. With the increase in modified BOF slag B cement, the flexural strength decrease; however, the capability of resisting sulfate corrode is improved due to the constant formation of a short rod-like shape ettringite in Na2SO4 solution and the improvement of the structure densification of the hydration products.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
T. M. Skipina ◽  
S. Macbeth ◽  
E. L. Cummer ◽  
O. L. Wells ◽  
S. Kalathoor

Abstract Introduction Acute encephalopathy, while a common presentation in the emergency department, is typically caused by a variety of metabolic, vascular, infectious, structural, or psychiatric etiologies. Among metabolic causes, hyperammonemia is relatively common and typically occurs in the setting of cirrhosis or liver dysfunction. However, noncirrhotic hyperammonemia is a rare occurrence and poses unique challenges for clinicians. Case presentation Here we report a rare case of a 50-year-old Caucasian female with history of bladder cancer status post chemotherapy, radical cystectomy, and ileocecal diversion who presented to the emergency department with severe altered mental status, combativeness, and a 3-day history of decreased urine output. Her laboratory tests were notable for hyperammonemia up to 289 μmol/L, hypokalemia, and hyperchloremic nonanion gap metabolic acidosis; her liver function tests were normal. Urine cultures were positive for Enterococcus faecium. Computed tomography imaging showed an intact ileoceal urinary diversion with chronic ileolithiasis. Upon administration of appropriate antibiotics, lactulose, and potassium citrate, she experienced rapid resolution of her encephalopathy and a significant reduction in hyperammonemia. Her hyperchloremic metabolic acidosis persisted, but her hypokalemia had resolved. Conclusion This case is an example of one of the unique consequences of urinary diversions. Urothelial tissue is typically impermeable to urinary solutes. However, when bowel segments are used, abnormal absorption of solutes occurs, including exchange of urinary chloride for serum bicarbonate, leading to a persistent hyperchloremic nonanion gap metabolic acidosis. In addition, overproduction of ammonia from urea-producing organisms can lead to abnormal absorption into the blood and subsequent oversaturation of hepatic metabolic capacity with consequent hyperammonemic encephalopathy. Although this is a rare case, prompt identification and treatment of these metabolic abnormalities is critical to prevent severe central nervous system complications such as altered mental status, coma, and even death in patients with urinary diversions.


Microbiology ◽  
2005 ◽  
Vol 151 (2) ◽  
pp. 607-613 ◽  
Author(s):  
Fanqiang Wang ◽  
Shelby Kashket ◽  
Eva R. Kashket

The isolation of Clostridium beijerinckii mutants that are more tolerant of butanol than the wild-type offered the opportunity to investigate whether the membrane activities which are required for maintaining the transmembrane ΔpH (the difference in pH between the cellular interior and exterior) are sensitive targets of butanol toxicity. The ΔpH was measured by the accumulation of [14C]benzoate using late-exponential-phase cells which were suspended in citrate/phosphate buffer at pH 5 (to maximize the ΔpH component of the protonmotive force) and supplemented with glucose and Mg2+. The ΔpH of the butanol-tolerant tolerant mutant, strain BR54, of C. beijerinckii NCIMB 8052 was found to be significantly more tolerant of added butanol than the wild-type. Thus, in potassium citrate/phosphate buffer the mutant cells maintained a ΔpH of 1·4 when butanol was added to a concentration of 1·5 % (w/v), while the wild-type ΔpH was reduced to 0·1. The ΔpH of both strains was completely dissipated with 1·75 % butanol, an effect attributed to a chaotropic effect on the membrane phospholipids. Similar results were obtained in sodium citrate/phosphate buffer. In the absence of added Mg2+, the ΔpH of the mutant decreased in both sodium and potassium citrate/phosphate buffer, but more rapidly in the former. Interestingly, the addition of butanol at low concentrations (0·8 %) prevented this ΔpH dissipation, but only in cells suspended in sodium citrate/phosphate buffer, and not in potassium citrate/phosphate buffer. In wild-type cells the decrease in ΔpH occurred more slowly than in the mutant, and sparing of the ΔpH by 0·8 % butanol was less pronounced. The authors interpret these data to mean that the ΔpH is dissipated in the absence of Mg2+ by a Na+- or K+-linked process, possibly by a Na+/H+ or a K+/H+ antiporter, and that the former is inhibited by butanol. Apparently, butanol can selectively affect a membrane-associated function at concentrations lower than required for the complete dissipation of transmembrane ion gradients. Additionally, since the butanol-tolerant mutant BR54 is deficient in the ability to detoxify methylglyoxal (MG) and contains higher levels of MG than the wild-type, the higher Na+/H+ antiporter activity of the mutant may be due to the greater degree of protein glycation by MG in the mutant cells. The mechanism of butanol tolerance may be an indirect result of the elevated glycation of cell proteins in the mutant strain. Analysis of membrane protein fractions revealed that mutant cells contained significantly lower levels of unmodified arginine residues than those of the wild-type cells, and that unmodified arginine residues of the wild-type were decreased by exposure of the growing cells to added MG.


Sign in / Sign up

Export Citation Format

Share Document